Buka menu utama
Grafik logaritma terhadap basis yang berbeda.merah adalah terhadap basis e, hijau adalah terhadap basis 10, dan ungu adalah terhadap basis 1.7. Perhatikan bahwa grafik logaritma terhadap basis yang berbeda selalu melewati titik (1,0)

Logaritma adalah operasi matematika yang merupakan kebalikan (atau invers) dari eksponen atau pemangkatan.

Rumus dasar logaritma:

dengan syarat a > 0 dan a ≠ 1.

Pada rumus ini, a adalah basis atau pokok dari logaritma tersebut.

Beberapa buku dan karya ilmiah menuliskan sebagai . Notasi yang kedua umumnya ditemukan pada buku dan karya ilmiah yang berbahasa inggris.

BasisSunting

Logaritma yang paling umum digunakan adalah  ,   atau  , dan  . Fungsi-fungsi tersebut memiliki basis 2, e, dan 10.

Logaritma dengan basis e juga disebut 'logaritma natural', di mana:

 

 

NotasiSunting

  • Di Indonesia, kebanyakan buku pelajaran Matematika menggunakan notasi blog a daripada logba. Buku-buku Matematika berbahasa Inggris menggunakan notasi logba
  • Beberapa orang menulis ln a sebagai ganti elog a, log a sebagai ganti 10log a dan ld a sebagai ganti 2log a.
  • Pada kebanyakan kalkulator, LOG menunjuk kepada logaritma berbasis 10 dan LN menunjuk kepada logaritma berbasis e.
  • Pada beberapa bahasa pemrograman komputer seperti C,C++, Java dan BASIC, LOG menunjuk kepada logaritma berbasis e.
  • Terkadang Log x (huruf besar L) menunjuk kepada 10log x dan log x (huruf kecil L) menunjuk kepada elog x.

Mencari nilai logaritmaSunting

Cara untuk mencari nilai logaritma antara lain dengan menggunakan:

RumusSunting

Logaritma
ac = b → ª log b = c
a = basis
b = bilangan yang dilogaritma
c = hasil logaritma
Sifat-sifat Logaritma
ª log a = 1
ª log 1 = 0
ª log aⁿ = n
ª log bⁿ = n • ª log b
ª log b • c = ª log b + ª log c
ª log b/c = ª log b – ª log c
ªˆⁿ log b m = m/n • ª log b
ª log b = 1 ÷ b log a
ª log b • b log c • c log d = ª log d
ª log b = c log b ÷ c log a

Kegunaan logaritmaSunting

Logaritma sering digunakan untuk memecahkan persamaan yang pangkatnya tidak diketahui. Turunannya mudah dicari dan karena itu logaritma sering digunakan sebagai solusi dari integral. Dalam persamaan bn = x, b dapat dicari dengan pengakaran, n dengan logaritma, dan x dengan fungsi eksponensial.

Sains dan teknikSunting

Dalam sains, terdapat banyak besaran yang umumnya diekspresikan dengan logaritma. Sebabnya, dan contoh-contoh yang lebih lengkap, dapat dilihat di skala logaritmik.

  • Negatif dari logaritma berbasis 10 digunakan dalam kimia untuk mengekspresikan konsentrasi ion hidronium (pH). Contohnya, konsentrasi ion hidronium pada air adalah 10−7 pada suhu 25 °C, sehingga pH-nya 7.
  • Satuan bel (dengan simbol B) adalah satuan pengukur perbandingan (rasio), seperti perbandingan nilai daya dan tegangan. Kebanyakan digunakan dalam bidang telekomunikasi, elektronik, dan akustik. Salah satu sebab digunakannya logaritma adalah karena telinga manusia mempersepsikan suara yang terdengar secara logaritmik. Satuan Bel dinamakan untuk mengenang jasa Alexander Graham Bell, seorang penemu di bidang telekomunikasi. Satuan desibel (dB), yang sama dengan 0.1 bel, lebih sering digunakan.
  • Dalam astronomi, magnitudo yang mengukur terangnya bintang menggunakan skala logaritmik, karena mata manusia mempersepsikan terang secara logaritmik.

Penghitungan yang lebih mudahSunting

Logaritma memindahkan fokus penghitungan dari bilangan normal ke pangkat-pangkat (eksponen). Bila basis logaritmanya sama, maka beberapa jenis penghitungan menjadi lebih mudah menggunakan logaritma::

Penghitungan dengan angka Penghitungan dengan eksponen Identitas Logaritma
     
     
     
     

Sifat-sifat di atas membuat penghitungan dengan eksponen menjadi lebih mudah, dan penggunaan logaritma sangat penting, terutama sebelum tersedianya kalkulator sebagai hasil perkembangan teknologi modern.

Untuk mengkali dua angka, yang diperlukan adalah melihat logaritma masing-masing angka dalam tabel, menjumlahkannya, dan melihat antilog jumlah tersebut dalam tabel. Untuk mengitung pangkat atau akar dari sebuah bilangan, logaritma bilangan tersebut dapat dilihat di tabel, lalu hanya mengkali atau membagi dengan radix pangkat atau akar tersebut.

KalkulusSunting

Turunan fungsi logaritma adalah

 

di mana ln adalah logaritma natural, yaitu logaritma yang berbasis e. Jika b = e, maka rumus di atas dapat disederhanakan menjadi

 

Integral fungsi logaritma adalah

 

Integral logaritma berbasis e adalah

 

Penghitungan nilai logaritmaSunting

Nilai logaritma dengan basis b dapat dihitung dengan rumus dibawah ini.

 

Sedangkan untuk logaritma berbasis e dan berbasis 2, terdapat prosedur-prosedur yang umum, yang hanya menggunakan penjumlahan, pengurangan, pengkalian, dan pembagian.

Lihat pulaSunting

CatatanSunting

ReferensiSunting

Pranala luarSunting