Analisis kompleks

Dalam matematika, analisis kompleks (bahasa Inggris: complex analysis), merupakan cabang analisis matematis yang membahas fungsi dari bilangan kompleks (yakni mengkaji tidak hanya satu bilangan, melainkan dua bilangan, yakni bilangan riil dan bilangan imajiner[1]).

Analisis kompleks biasanya dikenal sebagai teori fungsi variabel kompleks atau teori fungsi peubah kompleks.

Konsep analisis kompleksSunting

Konsep analisis kompleks ini hampir mirip dengan konsep analisis real. Berikut ini merupakan konsep-konsep analisis kompleks, diantaranya

Bilangan kompleksSunting

 
Himpunan bilangan kompleks ( ) terdiri himpunan bilangan riil ( ) dan bilangan imajiner.

Dalam matematika, khususnya analisis kompleks, bilangan kompleks merupakan himpunan bilangan yang terdiri dua himpunan bilangan, yakni bilangan riil dan imajiner. Mengenai definisi bilangan kompleks, kita misalkan   adalah bilangan kompleks, sehingga dapat didefinisikan

 [2]

serta himpunannya didefinisikan sebagai

 ,[3]

dimana   adalah bagian riil, dinotasikan   dan   adalah bagian imajiner, dinotasikan  ,[2] atau   dan  .[3]

 
Ilustrasi mengenai bilangan kompleks secara geometri.

Fungsi elementerSunting

Pada konsep ini akan diperkenalkan fungsi elementer, yakni fungsi suku banyak, fungsi rasional, fungsi eksponensial, fungsi trigonometri, fungsi hiperbolik, fungsi logaritma (beserta inversnya), dan fungsi aljabar dan transenden.[4]

Fungsi suku banyakSunting

Dalam analisis kompleks, fungsi suku banyak didefinisikan sebagai

 

dimana  ,   adalah konstanta kompleks dan   adalah bilangan bulat positif yang dinamakan derajat suku polinom  .[4] Mengingat kembali, fungsi rasional adalah fungsi yang mana setiap pembilang dan penyebutnya berupa fungsi polinomial. Misalkan   dan   adalah fungsi polinomial dengan variabel kompleks sehingga

 

adalah fungsi rasional bilangan kompleks,[5] dengan kasus khusus diperoleh

 

adalah suatu transformasi linear atau dinamakan transformasi bilinear.[6]

Fungsi eksponensialSunting

Dalam cabang ini, eksponensial dapat memperluas deret kuasa fungsi eksponensial dari bilangan riil ke bilangan kompleks. Untuk suatu bilangan riil  ,

 

Karena   dan   (lihat disini mengenai hubungan fungsi trigonometri dengan deret), maka

 [7]

Hubungan fungsi eksponensial dengan bilangan kompleks ini dapat kita sebut sebagai rumus Euler.

Fungsi trigonometri dan fungsi hiperbolik beserta inversnyaSunting

Mengenai fungsi trigonometri cukup kita turunan rumus Euler, sehingga didapati

  dan  

Sifat-sifat mengenai fungsi trigonometri dalam bilangan riil berlaku juga dalam bilangan kompleks.[8] Karena fungsi trigonometri dan fungsi hiperbolik[9] (beserta inversnya) berhubungan, maka berlaku juga dalam bilangan kompleks.[10]

Fungsi logaritmaSunting

Dalam konsep ini, fungsi ini berupa generalisasi logaritma alami terhadap bilangan kompleks bukan nol. Misalkan  , dimana   dan persamaan ini ekuivalen dengan

 .[11]

Dengan substitusi, maka diperoleh

 [7]

dimana  .

Limit dan kekontinuanSunting

Suatu fungsi   terdefinisi atau mempunyai limit   untuk   mendekati   dituliskan sebagai

 .[12]

Definisi limit dapat kita agak-agihkan lebih lanjut menggunakan definsi limit (ε,δ).

Teorema — Jika nilai   mendekati   untuk setiap   mendekati  , maka untuk setiap bilangan real positif sangat kecil  , dapat ditemukan bilangan real positif sangat kecil   yang bergantung pada   sedemikian rupa sehingga untuk setiap di dalam lengkungan   kecuali pada  , diperoleh  . Secara simbolik dituliskan sebagai berikut.

Untuk semua  , terdapat   sedemikian rupa sehingga  .[13]

TurunanSunting

Turunan dalam analisis kompleks mirip dengan turunan dalam analisis riil. Namun, karena halaman ini membahas tentang analisis kompleks, kita akan menganggap   adalah bilangan kompleks. Menurut definisi, jika diturunkan di  , maka turunan   dirumuskan

  atau  .[14]

IntegralSunting

Dalam analisis kompleks, integral mirip dengan analisis riil (termasuk juga dengan kalkulus), yakni cabang dari analisis matematis yang menyelidiki fungsi dari bilangan kompleks. Dengan memisalkan   adalah fungsi kompleks dengan variabel riil   dimana   sehingga   dan   kontinu di interval  . Kita dapat menuliskannya sebagai

 .[15]

Integral dalam cabang ini dibagi menjadi:

  • Integral lintasan, yaitu suatu integral yang didefinisikan dalam bentuk   sepanjang lintasan   dari   hingga ke  . Ini dapat ditulis sebagai

  atau  .[16]

Bila   analitik di dalam dan pada kontur tertutup sederhana   arah positif dan bila   suatu titik di dalam   maka

 

jika dan hanya jika

 .[20]


ResiduSunting

Residu dalam analisis kompleks ialah bilangan kompleks yang sebanding dengan integral kontur dari fungsi meromorfik di sepanjang lintasan yang melintasi salah satu singularitasnya. Biasanya dilambangkan sebagai   atau  . Misal   adalah fungsi yang analitik di titik  , yang dapat diekspansi ke dalam deret Laurent yang berbentuk

 .

Pada koefisien  , terdapat pada suku deret Laurent yang berbentuk   dinamakan residu   pada  . Ini ditulis dengan

 .[21]

Teorema residu CauchySunting

Teorema residu (kadangkala disebut teorema residu Cauchy) merupakan teorema yang cukup penting untuk menghitung integral garis fungsi analitik terhadap kurva tertutup dan kerap kala dipakai untuk menghitung integral riil dan deret takhingga juga. Diberikan   adalah lintasan tertutup sederhana yang berorientasi positif, dengan eksepsi pada berhingga banyaknya titik   yang masing-masing merupakan singularitas terasing  . Maka,

 [22]

atau kita tuliskan sebagai

 .[23]
 
Ilustrasi mengenai pemetaan konformal  , yang mengakibatkan besar dan arah sudut tidak berubah.

Pemetaan konformalSunting

Pemetaan konformal (terkadang disebut juga sebagai transformasi konformal atau pemetaan bihomorfik) merupakan suatu pemetaan yang mempertahankan besar dan arah sudut. Pemetaan ini juga didefinisikan sebagai suatu teknik dalam matematika (terutama analisis kompleks) yang digunakan untuk mentransformasikan suatu permasalahan matematika beserta penyelesaiannya ke bentuk lain.

Dengan meninjau diberikan suatu pemetaan,  , beserta sebarang dua kurva  ,   pada bidang   berpotongan pada titik   dipetakan berturut-turut sebagai kurva   dan   pada bidang   yang berpotongan di   antara kurva   dan  , maka pemetaan   konformal pada  .[24]

Dimensi fraktal dalam bilangan kompleksSunting

Dimensi fraktal merupakan dimensi dengan rasio yang memberikan kompleksitas indeks statistik dengan membandingkan bagaimana detail dalam pola fraktal berubah skalanya pada saat diukur. Namun, halaman ini membahas dimensi fraktal dalam bilangan kompleks, salah satu himpunan yang terkenal adalah himpunan Julia dan himpunan Mandelbrot.[25]

Himpunan JuliaSunting

Himpunan Julia, himpunan yang pertama kali diselidiki matematikawan Prancis, Gaston Julia, merupakan salah satu contoh himpunan fraktal yang didefinisikan pada bilangan kompleks dan dibangun dari iterasi-iterasi fungsi kompleks.[26] Salah satu fungsi yang sederhana yang membangun himpunan Julia adalah

 .

Dalam dinamika kompleks, himpunan Julia sangat terkait erat dengan himpunan Mandelbrot.[26]

Himpunan MandelbrotSunting

Himpunan Mandelbrot, dinamai dari Benoît Mandelbrot (matematikawan berkebangsaan Prancis dan Amerika Serikat) merupakan kumpulan titik-titik   pada bidang kompleks yang dibangun dengan mengiterasikan fungsi   dengan nilai awal   bernilai  .[27]

Hubungan analisis kompleks dengan cabang lainnyaSunting

Analisis kompleks berguna terhadap cabang matematika lainnya, diantaranya: geometri aljabar, hubungan dimana metode transendental ke geometri aljabar, bersama dengan lebih banyak aspek geometri analisis kompleks, yaitu geometri kompleks; teori bilangan, salah satunya hipotesis Riemann, berasal dari Masalah Milenium. Masalah ini diperluas ke seluruh bidang kompleks melalui kontinuasi analitik.[28]; dan kombinatorik analitik, dimana cabang ini dapat diterapkan pada ekspansi binomial pada bilangan kompleks, seperti deret Taylor, deret Laurent, dan teorema binomial.[29]

Namun, hubungan analisis kompleks masih berkaitan dengan cabang fisika, di antaranya: hidrodinamika atau dinamika fluida, dimana bilangan kompleks dapat diterapkan ke dalam kasus penghitungan potensial untuk aliran inkompresibel dimensi 2.[30]; termodinamika, dimana hipotesis Riemann berhubungan dengan mekanika statistik, lihat gas Riemann bebas (en); dan mekanika kuantum, bilangan kompleks dapat diterapkan pada dualitas gelombang partikel, kontroversi kucing Schrödinger, studi kasus spin dan dadu, percobaan celah ganda (berupa contoh pedagogik), dan lain sebagainya.[31]

Lihat pulaSunting

ReferensiSunting

  1. ^ Fitri Aryani (2014). Sifat Subkelas Fungsi Univalen, hlm. 1
  2. ^ a b Ahmad Lubab M.Si., Fungsi kompleks, Buku Perkuliahan Program S-1 Jurusan Pendidikan Matematika Fakultas Tarbiyah IAIN Sunan Ampel Surabaya. hlm. 6
  3. ^ a b Endang Dedy, M.Si, Encum Sumianti, M.Si, Fungsi Variabel Kompleks. PT Bumi Aksara, hlm. 1. ISBN 978-602-444-713-7
  4. ^ a b M.Pd., Dr. Kadir (Februari 2016). Fungsi Peubah Kompleks (PDF). UIN JAKARTA PRESS. hlm. 61. ISBN 978-602-346-028-1. 
  5. ^ Ahlfors, Lars V. Complex Analysis, An Introduction to the Theory of Analytic Functions of One Complex Variable, Third Edition (PDF). hlm. 30. 
  6. ^ M. Pd., Dr. Kadir (Februari 2016). Fungsi Peubah Kompleks. UIN JAKARTA PRESS. hlm. 62. ISBN 978-602-346-028-1. 
  7. ^ a b Howie, John. M. (January 2003). Complex Analysis. hlm. 24. 
  8. ^ M.Pd., Dr. Kadir (Februari 2016). Fungsi Peubah Kompleks (PDF). UIN JAKARTA PRESS. hlm. 70. ISBN 978-602-346-028-1. 
  9. ^ M. Pd., Dr. Kadir (Februari 2016). Fungsi Peubah Kompleks (PDF). UIN JAKARTA PRESS. hlm. 77. ISBN 978-602-346-028-1. 
  10. ^ M. Pd., Dr. Kadir (Februari 2016). Fungsi Peubah Kompleks (PDF). UIN JAKARTA PRESS. hlm. 86. ISBN 978-602-346-028-1. 
  11. ^ Ahlfors, Lars V. Complex Analysis, An Introduction to the Theory of Analytic Functions of One Complex Variable, Third Edition. hlm. 46. 
  12. ^ M.Pd., Dr. Kadir (Februari 2016). Fungsi Peubah Kompleks (PDF). UIN JAKARTA PRESS. hlm. 97. ISBN 978-602-346-028-1. 
  13. ^ M.Pd., Dr. Kadir (Februari 2016). Fungsi Peubah Kompleks (PDF). UIN JAKARTA PRESS. hlm. 97. ISBN 978-602-346-028-1. 
  14. ^ M.Pd., Dr. Kadir (Februari 2016). Fungsi Peubah Kompleks (PDF). UIN JAKARTA PRESS. hlm. 116. ISBN 978-602-346-028-1. 
  15. ^ Nurwan, S.Pd. M.Si, 2019, Integral Kompleks, hlm. 1
  16. ^ Drs. Bainnudin Yani, M.S., M.Pd. Dr. Anwar, Drs. Syahjuzar M.Si, Pengantar Analisis Kompleks, Syiah Kuala Universitas Press, hlm. 127. ISBN 978-602-5679-03-2
  17. ^ Stalker, John (1998). Complex Analysis: Fundamentals of the Classical Theory of Functions. Springer. hlm. 77. ISBN 0-8176-4038-X. 
  18. ^ Bak, Joseph; Newman, Donald J. (1997). "Chapters 11 & 12". Complex Analysis. Springer. hlm. 130–156. ISBN 0-387-94756-6. 
  19. ^ Krantz, Steven George (1999). "Chapter 2". Handbook of Complex Variables. Springer. ISBN 0-8176-4011-8. 
  20. ^ Dra. Retno Marsitin, M.Pd, | Fungsi Kompleks, Yayasan Edelweis, hlm. 122. ISBN 978-602-14916-3-8
  21. ^ Dian Devita Yohanie, Aplikasi Teori Rsidu Dalam Perhitungan Suatu Integral, hlm. 17.
  22. ^ Dian Devita Yohanie, Aplikasi Teori Rsidu Dalam Perhitungan Suatu Integral, hlm. 20 (teorema 1).
  23. ^ Residu dan Pole, hlm. 5.
  24. ^ H. A. Parhusip, Sulistyono, Pemetaan Konformal Dan Modifikasinya Untuk Suatu Bidang Persegi, hlm. AA-43.
  25. ^ Yohanes Dimas Nugrahanto Wibowo, Dimensi Hausdorff dari Beberapa Bangun Fraktal, hlm. 75.
  26. ^ a b Titik Murwani, Dimensi Fraktal Himpunan Julia, hlm. 63.
  27. ^ Endang Ekowati, Pewarnaan Himpunan Mandelbrot, hlm. 4.
  28. ^ Hendra Gunawan, Fungsi zeta Riemann & Hipotesis Riemann.
  29. ^ Siti Ayu Setia Nastiti, Fungsi Pembangkit dari Polinomial Chebyshev Berdasarkan Ekspansi Binomial  , hlm. 11.
  30. ^ Evita Chandra, Aplikasi Bilangan Kompleks pada Dinamika Fluida.
  31. ^ Hendradi Hardhienata, Tutorial Mekanika Kuantum, (ver.1.1 [16.01.14] Vol. I.