Bola (geometri)

permukaan dari bola, yaitu analog dengan objek melingkar dalam dua dimensi, dimana "lingkaran" membatasi "disk"

Sebuah bola adalah objek geometri dalam ruang tiga dimensi yang merupakan permukaan dari bola, yaitu analog dengan objek melingkar dalam dua dimensi, dimana "lingkaran" membatasi "disk").

Sebuah proyeksi perspektif dua dimensi dari sebuah bola

Seperti lingkaran dalam ruang dua dimensi, bola secara matematis didefinisikan sebagai titik himpunan dimana semuanya berada pada jarak yang sama r dari titik tertentu dalam ruang tiga dimensi.[1] Jarak ini r adalah radius bola, yang terbentuk dari semua titik dengan jarak kurang dari atau, untuk bola tertutup, kurang dari atau sama dengan r dari titik tertentu, yang merupakan pusat matematika bola. Ini juga disebut sebagai jari-jari dan pusat bola. Ruas garis lurus terpanjang melalui bola, menghubungkan dua titik bola, melewati pusat dan panjangnya dengan demikian dua kali jari-jari; itu adalah diameter dari kedua bola dan bolanya.

Sementara di luar matematika istilah "bola" dan "bola" terkadang digunakan secara bergantian, dalam matematika perbedaan di atas dibuat dengan antara bola, yang merupakan permukaan tertutup dua dimensi pembenaman dalam ruang Euklides tiga dimensi, dan bola, yang merupakan bentuk tiga dimensi yang mencakup bola dan segala sesuatu di dalam bola (bola tertutup), atau, lebih sering, hanya titik di dalam, namun bukan di antara bola (bola terbuka). Ini sejalan dengan situasi dalam bidang, dimana istilah "lingkaran" dan "cakram" juga dapat dikacaukan.

Persamaan dalam tiga dimensiSunting

 
Dua jari-jari ortogonal dari suatu bola

Dalam geometri analitik , bola dengan pusat (x0, y0, z0) dan jari jari r adalah lokus titik (x, y, z) sedemikian rupa sehingga

 

biarkan a, b, c, d, e bilangan real dengan sebuah a ≠ 0 dan put

 

Lalu persamaan

 

tidak memiliki poin nyata sebagai solusi jika   dan disebut persamaan bola imajiner. Jika  , satu-satunya solusi   adalah intinya   dan persamaannya disebut persamaan titik bola. Akhirnya, dalam kasus ini  ,   adalah persamaan bola yang pusatnya adalah   dan yang radiusnya adalah  .[1]

Jika a dalam persamaan di atas adalah nol maka f(x, y, z) = 0 adalah persamaan suatu bidang. Dengan demikian, sebuah pesawat dapat dianggap sebagai bola jari-jari tak terbatas yang pusatnya adalah titik tak terhingga.[2]

Titik-titik di bola dengan jari-jari   dan pusat   dapat diparameterisasi via

 [3]

Keliling   dapat dikaitkan dengan sudut yang dihitung positif dari arah z positif- sumbu melalui pusat ke radius-vektor, dan keliling   dapat dikaitkan dengan sudut yang dihitung positif dari arah x- positif positif melalui pusat ke proyeksi vektor-jari-jari pada xy- plane.

Bola dari jari-jari yang berpusat di nol adalah permukaan integral dari bentuk diferensial berikut:

 

Persamaan ini mencerminkan bahwa vektor posisi dan kecepatan suatu titik,(x, y, z) dan (dx, dy, dz), yang berjalan di bola selalu ortogonal satu sama lain.

Sebuah bola juga dapat dibangun sebagai permukaan yang dibentuk dengan memutar lingkaran tentang semua diameternya . Karena lingkaran adalah jenis [[elips] khusus , bola adalah jenis elips khusus revolusi . Mengganti lingkaran dengan elips yang diputar pada sumbu utamanya , bentuknya menjadi spheroid prolate ; diputar tentang sumbu minor, sebuah spheroid oblate.[4]

Rumus bolaSunting

Luas permukaanSunting

Luas permukaan pada bola yaitu.

 

Archimedes pertama kali memperoleh rumus ini[5] dari fakta bahwa proyeksi ke permukaan lateral dari silinder yang dibatasi adalah pengawet area.[6] Pendekatan lain untuk memperoleh rumus berasal dari fakta bahwa rumus tersebut sama dengan turunan rumus untuk volume sehubungan dengan   karena volume total di dalam bola jari-jari   dapat dianggap sebagai penjumlahan dari luas permukaan jumlah yang tidak terbatas dari cangkang bola dengan ketebalan sangat kecil yang ditumpuk secara konseptual di dalam satu sama lain dari jari jari   hingga jari jari  . Pada ketebalan sangat kecil perbedaan antara luas permukaan bagian dalam dan luar setiap shell yang diberikan sangat kecil, dan volume unsur pada jari-jari   hanyalah produk dari luas permukaan pada jari-jari   dan ketebalan sangat kecil.

Pada jari-jari tertentu  , volume tambahan ( δV ) sama dengan produk dari luas permukaan pada jari-jari r ( A ( r ) dan ketebalan cangkang ( δr ):

 

Volume total adalah penjumlahan dari semua volume cangkang:

 

Dalam batas ketika approachesr mendekati nol [7] persamaan ini menjadi:

 

Pengganti  :

 

Membedakan kedua sisi persamaan ini sehubungan dengan   menghasilkan   sebagai fungsi  :

 

di mana r sekarang dianggap sebagai jari-jari bola yang tetap.

Atau, elemen luas pada bola diberikan dalam koordinat bola oleh dA = r2 sin θ dθ dφ. Dalam Kordinat Kartesius, elemen luas adalah

 

Total luas dengan demikian dapat diperoleh dengan integral:

 

Bola memiliki luas permukaan terkecil dari semua permukaan yang membungkus volume tertentu, dan melingkupi volume terbesar di antara semua permukaan tertutup dengan luas permukaan tertentu.[8] Karenanya bola muncul di alam: misalnya, gelembung dan tetesan air kecil secara kasar berbentuk bola karena tegangan permukaan secara lokal meminimalkan luas permukaan.

Luas permukaan relatif terhadap massa bola disebut luas permukaan spesifik dan dapat dinyatakan dari persamaan yang dinyatakan di atas sebagai

 

di mana ρ adalah kepadatan (rasio massa terhadap volume).

VolumeSunting

Volume pada bola yaitu:

 

Pada setiap   yang diberikan , volume tambahan ( δV ) sama dengan produk dari luas penampang disk pada   dan ketebalannya ( δx ):

 

Volume total adalah penjumlahan dari semua volume tambahan:

 

Dalam batas ketika δx mendekati nol,[7] persamaan ini menjadi:

 

Pada setiap x yang diberikan , segitiga siku-siku menghubungkan x , y dan r ke titik asal; karenanya, menerapkan Teorema Pythagoras menghasilkan:

 

Menggunakan substitusi ini memberi

 

yang dapat dievaluasi untuk memberikan hasilnya

 

Rumus alternatif ditemukan menggunakan koordinat bola , dengan elemen volume

 

begitu

 

Untuk tujuan paling praktis, volume di dalam bola yang tertulis dalam kubus dapat diperkirakan sekitar 52,4% dari volume kubus, karena V = π6 d3, di mana d adalah diameter bola dan juga panjang sisi kubus dan π6 ≈ 0.5236. Sebagai contoh, bola dengan diameter 1 m memiliki 52,4% volume kubus dengan panjang tepi 1 m, atau sekitar 0,524 m 3

Kurva pada bola Sunting

 
Bagian bidang dari sebuah bola: 1 lingkaran
 
Perpotongan koaksial bola dan silinder: 2 lingkaran

LingkaranSunting

  • Perpotongan bola dan bidang adalah lingkaran, titik atau kosong.

Dalam kasus lingkaran, lingkaran tersebut dapat dijelaskan dengan persamaan parametrik  : lihat penampang bidang dari ellipsoid.

Namun permukaan yang lebih rumit juga dapat memotong sebuah bola dalam lingkaran:

  • Perpotongan bola yang tidak kosong dengan permukaan revolusi, porosnya berisi pusat bola yaitu koaksial yang terdiri dari lingkaran dan/atau titik.

Diagram menunjukkan kasus, dimana perpotongan tabung dan bola terdiri dari dua lingkaran. Jika jari-jari tabung sama dengan jari-jari bola, perpotongannya menjadi satu lingkaran, dimana kedua permukaan bersinggungan.

Dalam kasus sferoid dengan pusat dan sumbu utama yang sama dengan bola, persimpangan akan terdiri dari dua titik (simpul), dimana permukaannya bersinggungan.

Kurva CleliaSunting

 
spiral bulat dengan  

Jika bola dideskripsikan dengan wakilan parametrik

 

maka akan mendapat kurva Clelia, jika sudut-sudutnya dihubungkan dengan persamaan

  •  

Kasus khususnya adalah: kurva Viviani ( ) dan spiral bola ( ), sebagai contohnya spiral Seiffert.

LoxodromeSunting

 
Loxodrome

Dalam navigasi, garis Rhumb atau loxodrome adalah busur yang melintasi semua meridian dari garis bujur pada sudut yang sama. Garis Rhumb bukanlah spiral bola. Tidak ada hubungan sederhana antara sudut   dan  .

Persimpangan bola dengan permukaan yang umumSunting

 
Tabung bola persimpangan umum

Jika sebuah bola berpotongan dengan permukaan lain, mungkin ada kurva bola yang lebih rumit.

Contoh
bola-tabung

Perpotongan bola dengan persamaan   dan tabung dengan persamaan   bukan hanya satu atau dua lingkaran. Ini adalah solusi dari sistem persamaan non linear

 
 

lihat kurva implisit dan diagram

Sifat geometrisSunting

Bola secara unik ditentukan oleh empat titik yang bukan koplanar. Secara lebih umum, bola secara unik ditentukan oleh empat kondisi seperti melewati suatu titik, bersinggungan dengan bidang, dll.[9] Sifat ini analog dengan properti bahwa tiga titik non-kollinear menentukan lingkaran unik dalam sebuah bidang.

Maka, sebuah bola unik ditentukan oleh sebuah lingkaran dan sebuah titik yang tidak berada di bidang lingkaran itu.

Dengan memeriksa solusi umum dari persamaan dua bola, dapat dilihat bahwa dua bola berpotongan dalam satu lingkaran dan bidang yang mengandung lingkaran itu disebut bidang radikal dari bola berpotongan.[10] Meskipun bidang radikal adalah bidang riil, lingkaran mungkin imajiner yaitu bola tidak memiliki titik yang sama atau terdiri dari satu titik sebagai bola bersinggungan pada titik itu.[11]

Sudut antara dua bola pada titik perpotongan sebenarnya adalah sudut dihedral yang ditentukan oleh bidang bersinggungan dengan bola pada titik tersebut. Dua bola berpotongan pada sudut yang sama di semua titik perpotongan lingkaran.[12] Potongan pada sudut siku-siku adalah ortogonal jika dan hanya jika kuadrat jarak antara pusatnya sama dengan jumlah kuadrat jari-jarinya.[2]

Pensil bolaSunting

Jika f(x, y, z) = 0 dan g(x, y, z) = 0 adalah persamaan dari dua bidang yang berbeda

 

juga persamaan bola untuk nilai arbitrer dari parameter s dan t. Himpunan semua bola memenuhi persamaan ini disebut pensil bola yang ditentukan oleh dua bola asli. Dalam definisi ini bola dijadikan menjadi bidang (jari-jari tak hingga, berpusat pada tak hingga) dan jika kedua bola asli adalah bidang maka semua bidang pensil adalah bidang, jika tidak, hanya ada satu bidang (bidang akar) dalam pensil.[2]

GeneralisasiSunting

DimensiSunting

Bola dapat digeneralisasikan ke ruang dengan jumlah dimensi berapa pun. Untuk bilangan asli n, sebuah "n-bola," sering kali ditulis sebagai Sn, adalah Titi himpunan dalam (dimensi-n + 1) Ruang Euklides yang berada pada jarak tetap r dari titik pusat ruang itu, dimana r, seperti sebelumnya, adalah bilangan riil positif. Khususnya:

  • S0: bola 0 adalah sepasang titik akhir dari sebuah interval [−r, r] dari garis sebenarnya
  • S1: 1 bola adalah lingkaran dengan jari-jari r
  • S2: 2-bola adalah bola biasa
  • S3: 3-bola adalah bola dalam ruang Euclidean 4-dimensi.

Bola untuk n > 2 terkadang disebut hiperbola.

n-bola dengan radius unit yang berpusat di titik asal dilambangkan Sn dan sering disebut sebagai n-bola. Perhatikan bahwa bola biasa adalah bola 2, karena permukaannya 2 dimensi yang tertanam dalam ruang 3 dimensi.

Luas permukaan unit (n-1)-bola adalah

 

dimana Γ(z) adalah fungsi gamma Euler.

Ekspresi lain untuk luas permukaan adalah

 

dan volume adalah kali luas permukaan rn atau

 

Rumus rekursif umum juga ada untuk volume dari n-bola.

Ruang metrikSunting

Secara lebih umum, dalam ruang metrik (E,d), bola pusat x dan jari-jari r > 0 adalah titik himpunan y sedemikian rupa maka d(x,y) = r.

Jika pusatnya adalah titik dibedakan yang dianggap sebagai asal dari E, seperti dalam ruang norma, itu tidak disebutkan dalam definisi dan notasi. Hal yang sama berlaku untuk jari-jari jika dianggap sama dengan satu, seperti dalam kasus bola unit.

Tidak dengan bola, bahkan sebuah bola besar dapat berupa himpunan kosong. Misalnya, dalam Zn dengan metrik Eullides, radius radius r tidak kosong hanya jika r2 bisa ditulis sebagai jumlah dari n kuadrat dari bilangan bulat.

Geometri bolaSunting

Elemen dasar geometri bidang Euclidean adalah titik dan garis . Di bola, titik didefinisikan dalam arti biasa. Analog dari "garis" adalah geodesik , yang merupakan lingkaran besar ; ciri utama dari lingkaran besar adalah bahwa bidang yang berisi semua titiknya juga melewati pusat bola. Mengukur dengan panjang busur menunjukkan bahwa jalur terpendek antara dua titik yang terletak di bola adalah segmen yang lebih pendek dari lingkaran besar yang mencakup titik-titik tersebut.

Banyak teorema dari geometri klasik juga berlaku untuk geometri bola, tetapi tidak semua melakukannya karena bola gagal memenuhi beberapa postulat geometri klasik , termasuk postulat paralel . Dalam trigonometri bola , sudut didefinisikan antara lingkaran besar. Trigonometri bola berbeda dari trigonometri biasa dalam banyak hal. Misalnya, jumlah sudut interior segitiga bulat selalu melebihi 180 derajat. Juga, dua segitiga bundar yang serupa adalah kongruen.

Lokus jumlah konstanSunting

Lokus titik dalam ruang sedemikian rupa sehingga jumlah ke   pangkat jarak   ke simpul dari padatan Platonis   dengan sirkumradius   konstan adalah sebuah bola, jika

 ,

yang pusatnya berada di pusat  .[13]

Nilai dari   bergantung pada jumlah simpul   dari padatan Platonis dan sama:

  = 1,2 - untuk tetrahedron reguler,

  = 1,2,3 - untuk oktahedron dan kubus,

  = 1,2,3,4,5 - untuk ikosahedron dan dodekahedron.

GambarSunting

BagianSunting

Lihat pulaSunting

Catatan dan referensiSunting

CatatanSunting

Bagian ini kosong

ReferensiSunting

  1. ^ a b Albert 2016, hal. 54.
  2. ^ a b c Woods 1961, p. 266.
  3. ^ (Kreyszig 1972, hlm. 342).
  4. ^ Albert 2016, p. 60.
  5. ^ (Inggris) Weisstein, Eric W. "Sphere". MathWorld. 
  6. ^ Steinhaus 1969, p. 221.
  7. ^ a b E.J. Borowski; J.M. Borwein (1989). Collins Dictionary of Mathematics. hlm. 141, 149. ISBN 978-0-00-434347-1. 
  8. ^ Osserman, Robert (1978). "The isoperimetric inequality". Bulletin of the American Mathematical Society. 84: 1187. Diakses tanggal 14 December 2019. 
  9. ^ Albert 2016, p. 55.
  10. ^ Albert 2016, hal. 57.
  11. ^ Woods 1961, hal. 267.
  12. ^ Albert 2016, p. 58.
  13. ^ Meskhishvili, Mamuka (2020). "Cyclic Averages of Regular Polygons and Platonic Solids". Communications in Mathematics and Applications. 11: 335–355. 
  14. ^ New Scientist | Technology | Roundest objects in the world created.

Bacaan lebih lanjutSunting

Pranala luarSunting

Weisstein, Eric W. "Sphere". MathWorld.