Lingkaran
Dalam geometri Euklid, sebuah lingkaran adalah himpunan semua titik pada bidang dalam jarak tertentu, yang disebut jari-jari, dari suatu titik tertentu, yang disebut pusat. Lingkaran adalah contoh dari kurva tertutup sederhana, membagi bidang menjadi bagian dalam dan bagian luar.
Istilah dalam lingkaranSunting
Beberapa istilah geometri mengenai lingkaran, yaitu:
- Istilah yang menunjukkan titik, yaitu:
- Titik pusat (P)
merupakan titik tengah lingkaran, di mana jarak titik tersebut dengan titik manapun pada lingkaran selalu tetap.
- Titik pusat (P)
- Istilah yang menunjukkan garisan, yaitu:
- Jari-jari (R)
merupakan garis lurus yang menghubungkan titik pusat dengan lingkaran. - Tali busur (TB)
merupakan garis lurus di dalam lingkaran yang memotong lingkaran pada dua titik yang berbeda. - Busur (B)
merupakan garis lengkung baik terbuka, maupun tertutup yang berimpit dengan lingkaran. - Keliling lingkaran (K)
merupakan busur terpanjang pada lingkaran. - Diameter (D)
merupakan tali busur terbesar yang panjangnya adalah dua kali dari jari-jarinya. Diameter ini membagi lingkaran sama luas. - Apotema
merupakan garis terpendek antara tali busur dan pusat lingkaran.
- Jari-jari (R)
- Istilah yang menunjukkan luasan, yaitu:
- Juring (J)
merupakan daerah pada lingkaran yang dibatasi oleh busur dan dua buah jari-jari yang berada pada kedua ujungnya. - Tembereng (T)
merupakan daerah pada lingkaran yang dibatasi oleh sebuah busur dengan tali busurnya. - Cakram (C)
merupakan semua daerah yang berada di dalam lingkaran. Luasnya yaitu jari-jari kuadrat dikalikan dengan pi. Cakram merupakan juring terbesar.
- Juring (J)
PersamaanSunting
Suatu lingkaran memiliki persamaan
dengan adalah jari-jari lingkaran dan adalah koordinat pusat lingkaran.
Jika pusat lingkaran terdapat di , maka persamaan di atas dapat dituliskan sebagai
Bentuk persamaan lingkaran dapat dijabarkan juga menjadi bentuk
dengan adalah jari-jari lingkaran dan adalah koordinat pusat lingkaran. Bentuk persamaan tersebut dikenal sebagai bentuk umum persamaan lingkaran.
Persamaan parametrikSunting
Lingkaran dapat pula dirumuskan dalam suatu persamaan parameterik, yaitu
yang apabila dibiarkan menjalani t akan dibuat suatu lintasan berbentuk lingkaran dalam ruang x-y.
Luas lingkaranSunting
Luas lingkaran memiliki rumus
yang dapat diturunkan dengan melakukan integrasi elemen luas suatu lingkaran
dalam koordinat polar, yaitu
Dengan cara yang sama dapat pula dihitung luas setengah lingkaran, seperempat lingkaran, dan bagian-bagian lingkaran. Juga tidak ketinggalan dapat dihitung luas suatu cincin lingkaran dengan jari-jari dalam dan jari-jari luar .
Penjumlahan elemen juringSunting
Luas lingkaran dapat dihitung dengan memotong-motongnya sebagai elemen-elemen dari suatu juring untuk kemudian disusun ulang menjadi sebuah persegi panjang yang luasnya dapat dengan mudah dihitung. Dalam gambar r berarti sama dengan R yaitu jari-jari lingkaran.
Luas juringSunting
Luas juring suatu lingkaran dapat dihitung apabila luas lingkaran dijadikan fungsi dari R dan θ, yaitu;
dengan batasan nilai θ adalah antara 0 dan 2π. Saat θ bernilai 2π, juring yang dihitung adalah juring terluas, atau luas lingkaran.
Luas juring adalah atau
Luas temberengSunting
Luas tembereng = Luas juring - Luas segitiga sama kaki.
Luas cincin lingkaranSunting
Suatu cincin lingkaran memiliki luas yang bergantung pada jari-jari dalam dan jari-jari luar , yaitu
di mana untuk rumus ini kembali menjadi rumus luas lingkaran.
Luas potongan cincin lingkaranSunting
Dengan menggabungkan kedua rumus sebelumnya, dapat diperoleh
yang merupakan luas sebuah cincin tak utuh.
Keliling lingkaranSunting
Keliling lingkaran memiliki rumus:
Panjang busur lingkaranSunting
Panjang busur suatu lingkaran dapat dihitung dengan menggunakan rumus
yang diturunkan dari rumus untuk menghitung panjang suatu kurva
di mana digunakan
sebagai kurva yang membentuk lingkaran. Tanda mengisyaratkan bahwa terdapat dua buah kurva, yaitu bagian atas dan bagian bawah. Keduanya identik (ingat definisi lingkaran), sehingga sebenarnya hanya perlu dihitung sekali dan hasilnya dikalikan dua.
Panjang busur adalah atau
π (Pi)Sunting
Nilai pi adalah suatu besaran yang merupakan sifat khusus dari lingkaran, yaitu perbandingan dari keliling K dengan diameternya D:
ReferensiSunting
PustakaSunting
- Pedoe, Dan (1988). Geometry: a comprehensive course. Dover.
- "Circle" in The MacTutor History of Mathematics archive
Pranala luarSunting
Wikimedia Commons memiliki media yang terkait dengan: |
Wikiquote memiliki koleksi kutipan yang berkaitan dengan: |
- Hazewinkel, Michiel, ed. (2001) [1994], "Circle", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- Circle (PlanetMath.org website)
- (Inggris) Eric W. Weisstein, Circle di MathWorld.
- Interactive Java applets for the properties of and elementary constructions involving circles.
- Interactive Standard Form Equation of Circle Click and drag points to see standard form equation in action
- Munching on Circles at cut-the-knot
- Area of a Circle Calculate the basic properties of a circle.
- MathAce's Circle article – has a good in-depth explanation of unit circles and transforming circular equations.
- How to find the area of a circle. There are many types of problems involving how to find the area of circle; for example, finding area of a circle from its radius, diameter or circumference.
Wikimedia Commons memiliki media mengenai Circle. |
Wikibuku Subjek:Matematika memiliki halaman bertajuk |
Jika Anda melihat halaman yang menggunakan templat {{stub}} ini, mohon gantikan dengan templat rintisan yang lebih spesifik.
Artikel bertopik geometri ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya. |