Ekologi

ilmu tentang interaksi antara makhluk hidup dengan sesama makhluk hidup serta dengan lingkungannya

Ekologi (dari bahasa Yunani οἶκος, “rumah” dan -λογία, “studi”) adalah cabang ilmu biologi yang mempelajari interaksi antara makhluk hidup dengan makhluk hidup lain dan juga dengan lingkungan sekitarnya.[1] Komponen yang terlibat dalam interaksi ini dapat dibagi menjadi komponen biotik (hidup) dan abiotik (tak hidup). Ekologi merupakan ilmu dengan topik yang luas dan kompleks, yang mencakup hierarki dan keanekaragaman hayati, jumlah dan persebaran organisme, peran dan interaksi antarorganisme, habitat dan relung, jaring-jaring makanan, daur nutrien dan daur biogeokimia, serta berbagai proses lainnya. Berbagai pendekatan dapat digunakan untuk mengelompokkan ekologi menjadi sejumlah subdisiplin ilmu, baik menurut pola spasial (tempat) dan temporal (waktu), subjek yang dipelajari, maupun keterkaitan dengan bidang ilmu lainnya.

Ekologi
The Earth seen from Apollo 17.jpg
Hawk eating prey.jpg European honey bee extracts nectar.jpg
Bufo boreas.jpg Blue Linckia Starfish.JPG
Ekologi membahas seluruh skala kehidupan, dari bakteri mikroskopik hingga proses yang menjangkau seluruh planet.

Ruang lingkupSunting

Biotik dan abiotikSunting

 
Komponen biotik (hidup) dan abiotik (tak hidup) berinteraksi satu sama lain

Ada dua komponen yang terlibat dalam interaksi antara makhluk hidup dengan lingkungannya, yaitu komponen hidup (disebut komponen biotik atau faktor biotik) dan komponen tak hidup (disebut komponen abiotik atau faktor abiotik). Semua jenis makhluk hidup dengan berbagai perannya merupakan komponen biotik, termasuk patogen dan parasit penyebab penyakit.[2]

Komponen abiotik merupakan penyusun ekosistem yang berupa benda-benda tak hidup, misalnya air, udara, cahaya, suhu, kelembapan, atmosfer, tanah, dan keasaman. Di lingkungan laut, keasinan, kadar oksigen, kejernihan air, dan energi matahari juga termasuk komponen abiotik yang memengaruhi organisme di dalamnya.[3]

HierarkiSunting

Dunia biologis dapat dikelompokkan secara hierarkis menurut subjek yang dipelajari. Secara berurutan, unit terkecil hingga terbesar yaitu sel, jaringan, organ, organisme, spesies, populasi, komunitas, ekosistem, bioma, dan biosfer. Ekologi juga dapat dibagi menjadi beberapa cabang berdasarkan pengelompokan ini (di atas tingkat organisme individual), misalnya ekologi populasi, ekologi komunitas, dan ekologi ekosistem. Populasi diartikan sebagai semua organisme dari spesies yang sama yang hidup di tempat dan waktu yang sama. Komunitas adalah semua populasi dari dua spesies organisme atau lebih yang hidup di tempat dan waktu yang sama. Ekosistem yaitu semua makhluk hidup (biotik) dan benda mati (tak hidup atau abiotik) yang berada di tempat yang sama. Bioma yakni sekelompok ekosistem serupa yang memiliki sifat lingkungan fisik yang sama di seluruh dunia. Terakhir, biosfer merupakan keseluruhan ekosistem di Bumi.[4][5]

Keanekaragaman hayatiSunting

 
Keanekaragaman hayati pada terumbu karang

Keanekaragaman hayati atau biodiversitas menggambarkan keanekaragaman kehidupan mulai dari gen hingga ekosistem. Keanekaragaman hayati mencakup setiap tingkat organisasi biologis, misalnya keanekaragaman spesies, keanekaragaman ekosistem, dan keanekaragaman genetik. Para ilmuwan tertarik pada cara keanekaragaman ini memengaruhi proses ekologi yang kompleks yang beroperasi di tingkat dan di antara tingkat masing-masing.[6][7] Keanekaragaman hayati memainkan peran penting dalam layanan ekosistem yang menjaga dan meningkatkan kualitas hidup manusia.[8] Keanekaragaman hayati (khususnya keanekaragaman spesies) dan ekosistem saling memengaruhi. Perubahan lingkungan dapat mengakibatkan hilangnya keanekaragaman hayati sehingga kestabilannya perlu dijaga.[9]

HabitatSunting

Habitat adalah jenis lingkungan alami yang ditempati oleh suatu spesies tertentu untuk hidup. Habitat dari suatu spesies merupakan tempat yang digunakan oleh spesies tersebut untuk menemukan makanan, tempat tinggal, perlindungan, dan bereproduksi.[10] Beberapa jenis habitat misalnya habitat terestrial yang meliputi hutan, padang rumput, dan gurun; habitat air tawar meliputi sungai, danau, dan kolam; habitat laut meliputi teluk, laut lepas, terumbu karang, dan dasar laut. Organisme yang mengalami pergeseran habitat merupakan bukti akan adanya persaingan di alam. Sebagai contoh, salah satu populasi kadal tropis (Tropidurus hispidus) memiliki tubuh yang lebih rata dibandingkan dengan populasi utama mereka yang hidup di sabana terbuka. Populasi kadal tropis yang tinggal di singkapan batuan yang terisolasi dapat bersembunyi di celah-celah bebatuan sehingga tubuh mereka yang rata memberikan keuntungan selektif. Pergeseran habitat juga terjadi dalam sejarah perkembangan kehidupan amfibi, dan pada serangga yang bertransisi dari habitat akuatik ke darat. Istilah biotop dan habitat kadang-kadang digunakan secara bergantian, tetapi biotop berlaku untuk lingkungan komunitas, sedangkan habitat berlaku untuk lingkungan suatu spesies.[11][12][13]

RelungSunting

Dalam ekologi, relung adalah sekumpulan kondisi biotik dan abiotik yang menjadikan suatu spesies dapat bertahan hidup dan mempertahankan jumlah populasi yang stabil. Definisi ini diajukan oleh George Evelyn Hutchinson pada tahun 1957 meskipun konsep relung ekologis telah mulai diperkenalkan sejak tahun 1917 oleh Joseph Grinnell.[14] Jika habitat adalah lokasi spesifik tempat suatu organisme hidup, relung adalah peran yang dimainkan oleh spesies di dalam suatu ekosistem. Relung menggambarkan posisi suatu spesies dalam jaring-jaring makanan dan hubungannya dengan spesies lainnya dalam suatu ekosistem.[15] Seiring dengan perubahan ekosistem, misalnya oleh rekayasa, relung juga dapat berubah melalui proses yang disebut konstruksi relung. Konstruksi ini berperan sebagai jembatan yang menghubungkan ekologi, evolusi, dan ekosistem.[16]

Jejaring makananSunting

 
Gambaran umum jaring-jaring makanan di antara burung air di Teluk Chesapeake

Jaring-jaring makanan merupakan jejaring ekologis dasar. Tumbuhan menangkap energi matahari dan menggunakannya untuk menyintesis gula sederhana melalui fotosintesis. Mereka mengumpulkan nutrien lalu dimakan oleh herbivora sehingga energi ditransfer ke organisme pemakannya melalui konsumsi. Jalur makan-memakan linier sederhana dari spesies trofik basal ke konsumen teratas disebut rantai makanan. Pola rantai makanan yang saling terkait dalam komunitas ekologis menciptakan jaring-jaring makanan yang kompleks. Jaring makanan merupakan peta konsep atau perangkat heuristik yang digunakan untuk menggambarkan dan mempelajari jalur aliran energi dan material.[17][18][19]

Gambaran jaring makanan sering kali memiliki keterbatasan dibandingkan dengan dunia nyata. Pengukuran empiris jaring makanan secara lengkap umumnya terbatas pada habitat tertentu, seperti gua atau kolam, dan prinsip-prinsip yang diperoleh dari studi jaring makanan diekstrapolasi ke sistem yang lebih besar. Hubungan makan-memakan membutuhkan penyelidikan ekstensif ke dalam isi usus organisme yang mungkin sulit untuk dijelaskan. Sebagai alternatif, isotop stabil dapat digunakan untuk melacak aliran diet nutrien dan energi dalam jaring makanan.[20] Terlepas dari keterbatasan ini, jaring makanan tetap menjadi alat yang berharga dalam memahami ekosistem komunitas.[21]

Tingkatan trofikSunting

 
Sebuah piramida trofik (a) dan jaring-jaring makanan (b) yang menggambarkan hubungan ekologis di antara organisme di ekosistem darat boreal utara pada umumnya. Piramida trofik secara kasar mewakili biomassa (biasanya diukur sebagai berat kering total) di setiap tingkatan. Tumbuhan umumnya memiliki biomassa terbesar. Nama kategori trofik ditampilkan di sebelah kanan piramida. Beberapa ekosistem, seperti berbagai lahan basah, tidak diatur sebagai piramida yang ketat karena tumbuhan air tidak seproduktif tumbuhan darat berumur panjang seperti pohon. Piramida trofik ekologi biasanya digambarkan sebagai salah satu dari tiga jenis: 1) piramida angka, 2) piramida biomassa, atau 3) piramida energi.[2]

Tingkatan trofik (dari bahasa Yunani troph, τροφή, trophē, yang berarti "makanan" atau "makan") adalah "sekelompok organisme yang memperoleh sebagian besar energinya dari tingkatan yang lebih rendah (menurut piramida ekologi) yang lebih dekat dengan sumber abiotik".[22] Tautan dalam jaring-jaring makanan menghubungkan relasi konsumsi atau trofisme antarspesies. Keanekaragaman hayati dalam ekosistem dapat diatur ke dalam piramida trofik, dengan dimensi vertikal yang mewakili hubungan makan-memakan dari dasar rantai makanan hingga predator puncak, dan dimensi horizontal yang mewakili kelimpahan atau biomassa di setiap tingkatan.[23]

Berdasarkan peranannya dalam jaring-jaring makanan, suatu spesies dikategorikan sebagai autotrof (atau produsen utama), heterotrof (atau konsumen), dan dekomposer atau pengurai (juga meliputi detritivor). Autotrof adalah organisme yang menciptakan makanannya sendiri. Mereka menghasilkan senyawa organik kompleks (seperti karbohidrat, lemak, dan protein) dengan memanfaatkan energi dari cahaya (fotosintesis) atau reaksi kimia anorganik (kemosintesis). Heterotrof adalah organisme yang harus memakan organisme lain untuk mendapatkan energi. Heterotrof dapat dibagi lebih lanjut menjadi beberapa kelompok fungsional yang meliputi konsumen primer (herbivor ketat), konsumen sekunder (pemangsa bersifat karnivor yang secara eksklusif memakan herbivor), dan konsumen tersier (pemangsa yang memakan campuran herbivor dan pemangsa lain). Omnivor tidak cocok dengan kategori fungsional ini karena mereka memakan jaringan tumbuhan dan hewan. Meskipun demikian, omnivor memiliki pengaruh fungsional yang lebih besar sebagai pemangsa. Di sisi lain, dekomposer atau pengurai adalah organisme yang memecah organisme yang telah mati melalui proses pembusukan, contohnya bakteri dan jamur. Pengurai juga tergolong sebagai heterotrof yang menyerap nutrien secara langsung melalui proses kimiawi dan biologis secara eksternal. Ada pula organisme pengurai yang disebut detritivor seperti cacing tanah dan kutu kayu. Mereka mencerna dan menguraikan bagian tubuh tumbuhan dan hewan, termasuk tinja.[2][24]

SejarahSunting

 
Ernst Haeckel, ilmuwan yang mencetuskan kata ekologi

Tak ada batas yang jelas mengenai permulaan ekologi sebagai disiplin ilmiah. Meskipun demikian, prinsip-prinsip ekologi telah ditelaah sejak zaman Yunani Kuno oleh Aristoteles dan terutama muridnya, Theophrastus, yang mengamati dan menjelaskan hubungan antara organisme dan lingkungannya, misalnya mengapa spesies tertentu lebih menyukai lingkungan tertentu.[25] Pada awal abad ke-19, Alexander von Humboldt menjelaskan korelasi antara asosiasi tumbuhan (seperti padang rumput, hutan hujan, dan tundra) dengan faktor lingkungan (seperti suhu, curah hujan, dan topografi) untuk memahami jumlah dan persebaran spesies hewan dan tumbuhan.[26] Istilah ekologi pertama kali dikemukakan oleh Ernst Haeckel sebagai oekologie pada tahun 1866; kata bahasa Yunani oikos sendiri dijadikan akar bagi istilah ekonomi (pengaturan rumah tangga) dan ekologi (studi tentang rumah tangga).[27] Tiga tahun setelah memublikasikan istilah ini, Haeckel mendefinisikan ekologi sebagai “Seluruh ilmu tentang hubungan organisme dengan dunia luar di sekitarnya; hubungan tersebut dapat kita perhitungkan dalam arti yang lebih luas pada semua kondisi keberadaan. Hal ini sebagian bersifat organik, sebagian lagi bersifat anorganik”.[28]

George Evelyn Hutchinson (1903–1991) disebut sebagai bapak limnologi dan bapak ekologi modern. Ia secara komprehensif mengamati dan mengukur secara empiris faktor-faktor organik dan lingkungan yang dapat memengaruhi biota suatu danau, serta meletakkan dasar-dasar relung ekologi.[29][30] Ekologi kemudian menjadi populer sekitar tahun 1960-an ketika isu-isu lingkungan mulai mendapatkan perhatian publik.[31] Pada masa kini, ekologi dikaitkan dengan beragam bidang ilmu lain karena kompleksitasnya yang tinggi, mulai dari filsafat hingga matematika.[32][33]

Cabang dan keterkaitan dengan bidang lainSunting

Sebagai disiplin ilmu yang luas, ekologi dapat dibagi menjadi beberapa cabang. Berdasarkan kompleksitasnya, misalnya, subdisiplin ekologi mencakup ekologi molekuler, ekologi populasi atau autekologi, ekologi komunitas atau sinekologi, ekologi ekosistem, ekologi sistem, dan ekologi perilaku. Berdasarkan jenis organismenya, ekologi dapat dibagi menjadi ekologi hewan, ekologi tumbuhan, dan ekologi mikrob. Berdasarkan lokasi atau lingkungannya, ekologi dapat berupa ekologi hutan, ekologi intertidal, ekologi gurun, dan ekologi pertanian. Kata ekologi juga digunakan secara luas dalam bidang ilmu lain, misalnya ekologi industrial, ekologi media, ekologi sosial, dan antropologi ekologi.

ReferensiSunting

  1. ^ "Definition of ECOLOGY". www.merriam-webster.com (dalam bahasa Inggris). Diakses tanggal 2020-11-30. 
  2. ^ a b c Odum, Eugene Pleasants; Barrett, Gary W. (2005). Fundamentals of Ecology (edisi ke-5). Belmont, CA: Thomson Brooks/Cole. ISBN 0-534-42066-4. OCLC 56476957. Diarsipkan dari versi asli tanggal 28 Juli 2020. 
  3. ^ "Ocean Abiotic Factors" (PDF). National Geographic. 30 Agustus 2013. Diakses tanggal 16 November 2020. 
  4. ^ Jax, Kurt (September 2006). "Ecological Units: Definitions and Application". The Quarterly Review of Biology. 81 (3): 237–258. doi:10.1086/506237. ISSN 0033-5770. 
  5. ^ Wakim, Suzanne; Grewal, Mandeep. "24.2: Introduction to Ecology". Biology LibreTexts. Diakses tanggal 15 November 2020. 
  6. ^ Scholes, R. J.; Mace, G. M.; Turner, W.; Geller, G. N.; Jurgens, N.; Larigauderie, A.; Muchoney, D.; Walther, B. A.; Mooney, H. A. (22 Agustus 2008). "Ecology: Toward a Global Biodiversity Observing System". Science. 321 (5892): 1044–1045. doi:10.1126/science.1162055. ISSN 0036-8075. 
  7. ^ Purvis, Andy; Hector, Andy (Mei 2000). "Getting the measure of biodiversity". Nature. 405 (6783): 212–219. doi:10.1038/35012221. ISSN 0028-0836. 
  8. ^ Cardinale, Bradley J.; Duffy, J. Emmett; Gonzalez, Andrew; Hooper, David U.; Perrings, Charles; Venail, Patrick; Narwani, Anita; Mace, Georgina M.; Tilman, David (7 Juni 2012). "Biodiversity loss and its impact on humanity". Nature. 486 (7401): 59–67. doi:10.1038/nature11148. ISSN 0028-0836. 
  9. ^ Cleland, E.E. (2011). "Biodiversity and Ecosystem Stability". Nature Education Knowledge. 3 (10): 14. 
  10. ^ Thomas, Ryan (2019). "Fundamental of Ecology". Marine Biology: An Ecological Approach (edisi ke-reprint). Waltham Abbey, Essex: Scientific e-Resources (dipublikasikan tanggal 2020). hlm. 86. ISBN 9781839474538. Diarsipkan dari versi asli tanggal 22 Mei 2020. Diakses tanggal 8 Maret 2020. A habitat is an ecological or environmental area that is inhabited by a particular species of animal, plant, or other type of organism. The term typically refers to the zone in which the organism lives and where it can find food, shelter, protection and mates for reproduction. 
  11. ^ Whittaker, R. H.; Levin, S. A.; Root, R. B. (Mei 1973). "Niche, Habitat, and Ecotope". The American Naturalist. 107 (955): 321–338. doi:10.1086/282837. ISSN 0003-0147. 
  12. ^ Schoener, Thomas W. (1975). "Presence and Absence of Habitat Shift in Some Widespread Lizard Species". Ecological Monographs. 45 (3): 233–258. doi:10.2307/1942423. ISSN 1557-7015. 
  13. ^ Vitt, L. J.; Caldwell, J. P.; Zani, P. A.; Titus, T. A. (15 April 1997). "The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus". Proceedings of the National Academy of Sciences. 94 (8): 3828–3832. doi:10.1073/pnas.94.8.3828. ISSN 0027-8424. PMC 20526 . PMID 9108063. 
  14. ^ Wiens, John J.; Graham, Catherine H. (Desember 2005). "Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology" (PDF). Annual Review of Ecology, Evolution, and Systematics. 36 (1): 519–539. doi:10.1146/annurev.ecolsys.36.102803.095431. ISSN 1543-592X. Diarsipkan dari versi asli tanggal 24 Oktober 2012. 
  15. ^ Steiner, Hannah (13 Januari 2020). "Ecological Habitat and Niche; what's The Difference?". Tired Earth. Diakses tanggal 16 November 2020. 
  16. ^ Matthews, Blake; De Meester, Luc; Jones, Clive G.; Ibelings, Bas W.; Bouma, Tjeerd J.; Nuutinen, Visa; de Koppel, Johan van; Odling-Smee, John (Mei 2014). "Under niche construction: an operational bridge between ecology, evolution, and ecosystem science". Ecological Monographs. 84 (2): 245–263. doi:10.1890/13-0953.1. ISSN 0012-9615. 
  17. ^ O'Neill, D.L.; Deangelis, D.L.; Waide, J.B.; Allen, T.F.H. (1986). A Hierarchical Concept of Ecosystems . Princeton University Press. hlm. https://archive.org/details/hierarchicalconc00onei/page/253 253]. ISBN 0-691-08436-X. 
  18. ^ Pimm, S. (2002). Food Webs. University of Chicago Press. hlm. 258. ISBN 978-0-226-66832-1. Diarsipkan dari versi asli tanggal 18 Maret 2015. Diakses tanggal 27 Juni 2015. 
  19. ^ Pimm, S.L.; Lawton, J.H.; Cohen, J.E. (1991). "Food web patterns and their consequences" (PDF). Nature. 350 (6320): 669–674. Bibcode:1991Natur.350..669P. doi:10.1038/350669a0. Diarsipkan dari versi asli (PDF) tanggal 10 Juni 2010. 
  20. ^ McCann, K. (2007). "Protecting biostructure" (PDF). Nature. 446 (7131): 29. Bibcode:2007Natur.446...29M. doi:10.1038/446029a. PMID 17330028. Diarsipkan dari versi asli (PDF) tanggal 22 Juli 2011. 
  21. ^ Wilbur, H.W. (1997). "Experimental ecology of food webs: Complex systems in temporary ponds" (PDF). Ecology. 78 (8): 2279–2302. doi:10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2. ISSN 0012-9658. Diarsipkan dari versi asli (PDF) tanggal 19 Mei 2011. Diakses tanggal 27 November 2010. 
  22. ^ Hairston,, Nelson G.; Hairston,, Nelson G. (September 1993). "Cause-Effect Relationships in Energy Flow, Trophic Structure, and Interspecific Interactions". The American Naturalist. 142 (3): 379–411. doi:10.1086/285546. ISSN 0003-0147. 
  23. ^ Duffy, J. Emmett; Cardinale, Bradley J.; France, Kristin E.; McIntyre, Peter B.; Thébault, Elisa; Loreau, Michel (Juni 2007). "The functional role of biodiversity in ecosystems: incorporating trophic complexity". Ecology Letters. 10 (6): 522–538. doi:10.1111/j.1461-0248.2007.01037.x. ISSN 1461-023X. 
  24. ^ Davic, Robert D. (2003). "Linking Keystone Species and Functional Groups: A New Operational Definition of the Keystone Species Concept". Conservation Ecology. 7 (1): resp11. doi:10.5751/ES-00502-0701r11. ISSN 1195-5449. 
  25. ^ Hughes, J. D. (1 Desember 1985). "Theophrastus as Ecologist". Environmental History Review. 9 (4): 296–306. doi:10.2307/3984460. ISSN 1053-4180. 
  26. ^ Egerton, Frank N.; Niquil, Nathalie; Martins, Irene (2019). "History of Ecology". Encyclopedia of Ecology. Elsevier. hlm. 398–428. doi:10.1016/b978-0-12-409548-9.00864-2. ISBN 978-0-444-64130-4. 
  27. ^ McManus, P. (2009). "Ecology". International Encyclopedia of Human Geography. Elsevier. hlm. 294–303. doi:10.1016/b978-008044910-4.00682-9. ISBN 978-0-08-044910-4. 
  28. ^ Friederichs, K. (Januari 1958). "A Definition of Ecology and Some Thoughts About Basic Concepts". Ecology. 39 (1): 154. doi:10.2307/1929981. 
  29. ^ Lynch, Patrick (21 November 2015). "Ecology, evolution, & climate change: G. Evelyn Hutchinson and the founding of modern ecology". YaleNews. Diakses tanggal 15 November 2020. 
  30. ^ Slobodkin, Lawrence B.; Slack, Nancy G. (Januari 1999). "George Evelyn Hutchinson: 20th-century ecologist". Endeavour. 23 (1): 24–30. doi:10.1016/S0160-9327(99)01182-5. 
  31. ^ "Ecology". National Geographic. Diakses tanggal 15 November 2020. 
  32. ^ deLaplante, K. (2008). "Philosophy of Ecology: Overview". Encyclopedia of Ecology. Elsevier. hlm. 510–515. doi:10.1016/b978-0-444-63768-0.00247-x. ISBN 978-0-444-64130-4. 
  33. ^ Legović, T. (2008). "Mathematical Ecology". Encyclopedia of Ecology. Elsevier. hlm. 2261–2266. doi:10.1016/b978-008045405-4.00694-7. ISBN 978-0-08-045405-4. 

Pranala luarSunting