Buka menu utama

Wikipedia β

Transformasi energi. Kilat mengubah 500 megajoule energi potensial listrik menjadi energi cahaya, energi bunyi, dan energi panas.

Dalam fisika, energi adalah properti fisika dari suatu objek, dapat berpindah melalui interaksi fundamental, yang dapat diubah bentuknya namun tak dapat diciptakan maupun dimusnahkan. Joule adalah satuan SI untuk energi, diambil dari jumlah yang diberikan pada suatu objek (melalui kerja mekanik) dengan memindahkannya sejauh 1 meter dengan gaya 1 newton.[1]

Kerja dan panas adalah 2 contoh proses atau mekanisme yang dapat memindahkan sejumlah energi. Hukum kedua termodinamika membatasi jumlah kerja yang didapat melalui proses pemanasan-beberapa diantaranya akan hilang sebagai panas terbuang. Jumlah maksimum yang dapat digunakan untuk kerja disebut energi tersedia. Sistem seperti mesin dan benda hidup membutuhkan energi tersedia, tidak hanya sembarang energi. Energi mekanik dan bentuk-bentuk energi lainnya dapat berpindah langsung ke bentuk energi panas tanpa batasan tertentu.

Ada berbagai macam bentuk-bentuk energi, namun semua tipe energi ini harus memenuhi berbagai kondisi seperti dapat diubah ke bentuk energi lainnya, mematuhi hukum konservasi energi, dan menyebabkan perubahan pada benda bermassa yang dikenai energi tersebut. Bentuk energi yang umum diantaranya energi kinetik dari benda bergerak, energi radiasi dari cahaya dan radiasi elektromagnetik, energi potensial yang tersimpan dalam sebuah benda karena posisinya seperti medan gravitasi, medan listrik atau medan magnet, dan energi panas yang terdiri dari energi potensial dan kinetik mikroskopik dari gerakan-gerakan partikel tak beraturan. Beberapa bentuk spesifik dari energi potensial adalah energi elastis yang disebabkan dari pemanjangan atau deformasi benda padat dan energi kimia seperti pelepasan panas ketika bahan bakar terbakar. Setiap benda yang memiliki massa ketika diam, memiliki massa diam atau sama dengan energi diam, meski tidak dijelaskan dalam fenomena sehari-hari di fisika klasik.

Menurut neraca massa-energi, semua bentuk energi membutuhkan massa. Contohnya, menambahkan 25 kilowatt-jam (90 megajoule) energi pada objek akan meningkatkan massanya sebanyak 1 mikrogram; jika ada timbangan yang sebegitu sensitif maka penambahan massa ini bisa terlihat. Matahari mengubah energi potensial nuklir menjadi bentuk energi lainnya; total massanya akan berubah ketika energi terlepas ke sekelilingnya terutama dalam bentuk energi radiasi.

Meskipun energi dapat berubah bentuk, namun hukum kekekalan energi menyatakan bahwa total energi pada sebuah sistem hanya berubah jika energi berpindah masuk atau keluar dari sistem. Hal ini berarti tidak mungkin menciptakan atau memusnahkan energi. Total energi dari sebuah sistem dapat dihitung dengan menambahkan semua bentuk energi dalam sistem tersebut. Contoh perpindahan dan transformasi energi adalah pembangkitan listrik, reaksi kimia, atau menaikkan benda.

Organisme hidup juga membutuhkan energi tersedia untuk tetap hidup; manusia misalnya, membutuhkan energi dari makanan beserta oksigen untuk memetabolismenya. Peradaban membutuhkan pasokan energi untuk berbagai kegiatan; sumber energi seperti bahan bakar fosil merupakan topik penting dalam ekonomi dan politik. Iklim dan ekosistem bumi juga dijalankan oleh energi radiasi yang didapat dari matahari (juga energi geotermal yang didapat dari dalam bumi.

Bentuk-bentuk energi
Tipe energi Deskripsi
Kinetik (≥0), energi akibat gerak dari suatu objek
Potensial Energi potensial terdiri dari banyak bentuk
Mekanik Jumlah energi kinetik dan potensial
Gelombang mekanik (≥0), bentuk energi mekanik akibat gerak osilasi suatu benda
Kimia energi yang terkandung dalam senyawa kimia
Listrik energi akibat medan listrik
Magnet energi akibat medan magnet
Radiasi (≥0), energi akibat radiasi elektromagnetik termasuk cahaya
Nuklir energi akibat nukleon berikatan membentuk nukleus atom
Ionisasi energi akibat ikatan elektron ke atom atau molekul
Elastik energi akibat deformasi material
Gravitasi energi akibat medan gravitasi
Diam (≥0) setara dengan massa diam
Termal Energi dalam suatu sistem yang dipengaruhi suhu
Panas Sejumlah energi termal yang berpindah (dari proses) ke arah suhu yang lebih rendah
Kerja mekanik sejumlah energi yang berpindah (dari proses) akibat perpindahan pada arah gaya

Daftar isi

SejarahSunting

 
Thomas Young – orang pertama yang mengemukakan istilah "energi" dalam pandangan modern.

Kata energi berasal dari bahasa Yunani Kuno: ἐνέργεια,[2] yang kemungkinan muncul pertama kali dalam karya Aristoteles pada abad ke-4 SM. Kebalikan dengan definisi modern, energeia adalah konsep filosofis kualitatif yang sangat luas.

Pada akhir abad ke-17, Gottfried Leibniz mengusulkan ide bahasa Latin: vis viva, atau gaya hidup, yang didefinisikan sebagai perkalian antara massa objek dengan kuadrat kecepatannya; ia percaya bahwa total vis viva adalah kekal. Untuk memperhitungkan perlambatan akibat friksi/gesekan, Leibniz membuat teori bahwa energi termal terdiri dari gerak acak dari bagian pembentuk zat, meski pada akhirnya hal ini membutuhkan waktu lebih dari satu abad untuk diterima secara umum. Analogi modern dari besaran ini (energi kinetik) hanya berbeda pada faktor pengali setengah.

Pada tahun 1807, Thomas Young kemungkinan adalah orang pertama yang menggunakan istilah "energi" daripada vis viva.[3] Gustave-Gaspard Coriolis menjelaskan "energi kinetik" pada tahun 1829, dan William Rankine memunculkan istilah "energi potensial" tahun 1853. Hukum kekekalan energi juga pertama kali dipostulatkan pada awal abad ke-19, dan berlaku pada semua sistem terisolasi. Pernah dipertentangkan apakah panas adalah substansi fisika atau bukan, atau hanyalah besaran fisika seperti momentum. Pada tahun 1845 James Prescott Joule menemukan hubungan antara kerja mekanik dengan munculnya panas.

Pengembangan ini memunculkan teori kekekalan energi, dirumuskan formal oleh William Thomson (Lord Kelvin) dalam termodinamika. Termodinamika memberikan penjelasan bagi pengembangan proses-proses kimia oleh Rudolf Clausius, Josiah Willard Gibbs, dan Walther Nernst. Clausius juga mengemukakan konsep entropi dan Jožef Stefan mengenalkan hukum energi radiasi. Menurut teorema Noether, hukum kekekalan energi adalah akibat daripada hukum fisika tidak berubah terhadap waktu.[4]

SatuanSunting

SI dan satuan berhubunganSunting

Satuan SI untuk energi dan kerja adalah joule (J), dinamakan untuk menghormati James Prescott Joule dan percobaannya dalam persamaan mekanik panas. Dalam istilah yang lebih mendasar 1 joule sama dengan 1 newton-meter dan, dalam istilah satuan dasar SI, 1 J sama dengan 1 kg m2 s−2.

Penggunaan dalam sainsSunting

Mekanika klasikSunting

Dalam mekanika klasik, energi yang properti yang berguna secara konsep dan matematis. Beberapa perumusan mekanika telah dikembangkan menggunakan energi sebagai konsep utama.

Kerja, sebuah bentuk energi, adalah gaya dikali jarak.

 

Disini dikatakan bahwa kerja ( ) sama dengan integral garis dari gaya F sepanjang lintasan C; untuk lebih detailnya lihat pada artikel kerja mekanik. Kerja dan energi adalah tergantung kerangka.

Total energi dalam sistem terkadang disebut Hamiltonian, diambil dari nama William Rowan Hamilton. Persamaan gerak klasik dapat ditulis dalam bentuk Hamiltonian, meski untuk sistem yang sangat kompleks dan abstrak. Persamaan klasik ini memiliki analogi langsungnya dalam mekanika kuantum nonrelativistik. [5]

Konsep lain berkaitan dengan energi disebut sebagai Lagrangian, diambil dari nama Joseph-Louis Lagrange. Formulasi ini sama pentingnya dengan Hamiltonian, dan keduanya dapat digunakan untuk menurunkan atau diturunkan dari persamaan gerak. Konsep ini ditemukan dalam konteks mekanika klasik, namun berguna secara umum untuk fisika modern. Konsep Lagrangian didefinisikan sebagai energi kinetik minus energi potensial. Umumnya, konsep Lagrange secara matematis lebih mudah digunakan daripada Hamiltonian untuk sistem non-konservatif (seperti sistem dengan gaya gesek).

PerpindahanSunting

KerjaSunting

Kerja didefinisikan sebagai "integral batas" gaya F sejauh s:

 

Persamaan di atas mengatakan bahwa kerja ( ) sama dengan integral dari perkalian dot antara gaya ( ) yang bekerja benda dan posisi benda mendekati nol ( ).

JenisSunting

Energi kinetikSunting

Energi kinetik adalah bagian energi yang berhubungan dengan gerakan suatu benda.

 

Persamaan di atas menyatakan bahwa energi kinetik ( ) sama dengan integral dari perkalian dot kecepatan ( ) sebuah benda dan momentum benda mendekati nol ( ).

Energi potensialSunting

Berlawanan dengan energi kinetik, yang adalah energi dari sebuah sistem dikarenakan gerakannya, atau gerakan internal dari partikelnya, energi potensial dari sebuah sistem adalah energi yang dihubungkan dengan konfigurasi ruang dari komponen-komponennya dan interaksi mereka satu sama lain. Jumlah partikel yang mengeluarkan gaya satu sama lain secara otomatis membentuk sebuah sistem dengan energi potensial. Gaya-gaya tersebut, contohnya, dapat timbul dari interaksi elektrostatik (lihat hukum Coulomb), atau gravitasi.

Energi dalamSunting

Energi internal adalah energi kinetik dihubungkan dengan gerakan molekul-molekul, dan energi potensial yang dihubungkan dengan getaran rotasi dan energi listrik dari atom-atom di dalam molekul. Energi internal seperti energi adalah sebuah fungsi keadaan yang dapat dihitung dalam sebuah sistem.

TermodinamikaSunting

Energi dalamSunting

Energi dalam adalah jumlah dari semua elemen energi mikroskopik yang ada pada sistem. Energi dalam merupakan energi yang dibutuhkan untuk menciptakan sistem. Energi dalam berhubungan dengan energi potensial, seperti struktur molekul, struktur kristal, gerak partikel, dan aspek geometri lain. Termodinamika berfokus pada perubahan energi dalam, namun bukan nilai absolutnya.[6]

Hukum pertama termodinamikaSunting

Hukum pertama termodinamika menyatakan bahwa energi always conserved[7] dan aliran panas merupakan bentuk perpindahan energi. Untuk sistem homogen, dengan suhu dan tekanan yang telah ditentukan, rumus penurunan dari hukum pertama, bahwa sistem yang hanya berdasar dari gaya tekanan dan perpindahan panas (misalnya silinder penuh berisi gas), perubahan diferensial energi dalam sistem dirumuskan dengan

 ,

dengan suku pertama di sebelah kanan adalah panas yang dipindahkan ke dalam sistem, dinyatakan dalam temperatur T dan entropi S (nilai entropi naik dan perubahan dS bernilai positif ketika sistem dipanaskan, dan suku terakhir di sebelah kanan adalah kerja yang dilakukan pada sistem, di mana tekanan P dan volume V (tanda negatif berasal dari kompresi pada sistem yang membutuhkan kerja yang dilakukan pada sistem sehingga perubahan volume, dV, bernilai negatif ketika kerja dilakukan pada sistem).

Persamaan ini sangat spesifik, mengabaikan semua energi kimia, listrik, nuklir maupun gravitasi. Rumus umum hukum pertama termodinamika nilainya tetap valid meskipun pada situasi di mana sistem tidak homogen. Untuk kasus ini, perubahan energi dalam pada sistem tertutup dinyatakan dengan

 

dengan   adalah panas yang masuk dalam sistem dan   adalah kerja yang dilakukan pada sistem.

Lihat pulaSunting

PustakaSunting

  • Feynman, Richard. Six Easy Pieces: Essentials of Physics Explained by Its Most Brilliant Teacher. Helix Book. See the chapter "conservation of energy" for Feynman's explanation of what energy is and how to think about it.
  • Einstein, Albert (1952). Relativity: The Special and the General Theory (Fifteenth Edition). ISBN 0-517-88441-0

ReferensiSunting

  1. ^ Energy units are usually defined in terms of the work they can do. However, because work is an indirect measurement of energy, (One example of the difficulties involved: if you use the first law of thermodynamics to define energy as the work an object can do, you must perform a perfectly reversible process, which is impossible in a finite time.) many experts emphasize understanding how energy behaves, specifically the conservation of energy, rather than trying to explain what energy "is". "The Feynman Lectures on Physics Vol I." (PDF). Diakses tanggal 3 Apr 2014. 
  2. ^ Harper, Douglas. "Energy". Online Etymology Dictionary. Diakses tanggal May 1, 2007. 
  3. ^ Smith, Crosbie (1998). The Science of Energy – a Cultural History of Energy Physics in Victorian Britain. The University of Chicago Press. ISBN 0-226-76420-6. 
  4. ^ Lofts, G; O'Keeffe D et al. (2004). "11 — Mechanical Interactions". Jacaranda Physics 1 (2 ed.). Milton, Queensland, Australia: John Willey & Sons Australia Ltd. p. 286. ISBN 0-7016-3777-3. 
  5. ^ The Hamiltonian MIT OpenCourseWare website 18.013A Chapter 16.3 Accessed February 2007
  6. ^ I. Klotz, R. Rosenberg, Chemical Thermodynamics - Basic Concepts and Methods, 7th ed., Wiley (2008), p.39
  7. ^ Kittel and Kroemer (1980). Thermal Physics. New York: W. H. Freeman. ISBN 0-7167-1088-9. 

Pranala luarSunting