Perkalian matriks

Dalam matematika, perkalian matriks adalah suatu operasi biner dari dua matriks yang menghasilkan sebuah matriks. Agar dua matriks dapat dikalikan, banyaknya kolom pada matriks pertama harus sama dengan banyaknya baris pada matriks kedua. Matriks hasil perkalian keduanya, akan memiliki baris sebanyak baris matriks pertama, dan kolom sebanyak kolom matriks kedua. Perkalian matriks A dan B dinyatakan sebagai AB.[1]

Agar perkalian matriks dapat dilakukan, matriks A perlu memiliki jumlah kolom yang sama dengan jumlah baris pada matriks B. Hasil perkalian keduanya adalah matriks dengan jumlah baris yang sama dengan matriks A dan jumlah kolom yang sama dengan matriks B.

Perkalian matriks didefinisikan pertama kali oleh matematikawan Prancis Jacques Philippe Marie Binet pada tahun 1812.[2] Definisi ini digunakannya untuk merepresentasikan komposisi dari pemetaan-pemetaan linear yang dinyatakan dalam bentuk matriks. Perkalian matriks selanjutnya menjadi konsep dasar dalam aljabar linear, dan memiliki banyak penerapan di berbagai bidang matematika, matematika terapan, statistika, fisika, ekonomi, dan teknik.[3][4] Menghitung hasil perkalian matriks adalah operasi yang penting dalam semua penerapan komputasi dari bidang allabar linear.

NotasiSunting

Artikel ini akan menggunakan konvensi penulisan berikut: matriks dinyatakan oleh huruf kapital dengan cetak tebal, contohnya  ; vektor dinyatakan oleh huruf kecil dengan cetak tebal, contohnya  ; dan entri-entri (elemen) dari vektor dan matriks akan dinyatakan dalam huruf miring (karena mereka anggota dari suatu lapangan), contohnya   dan  . Notasi indeks sering digunakan untuk menyatakan suatu definisi, dan dipakai sebagai format baku dalam literatur-literatur. Entri ke-  dari matriks   umumnya dinyatakan sebagai  ,  , atau  ; sedangkan label yang menyatakan bahwa matriks merupakan sebuah elemen dari suatu koleksi dari matriks umumnya hanya ditulis sebagai  ,  , dan lain-lain.

DefinisiSunting

Jika   adalah matriks berukuran   dan   adalah matriks berukuran  , dengan elemen-elemen sebagai berikut,

 

Hasil perkalian kedua matriks tersebut,   (dinyatakan tanpa menggunakan tanda kali atau titik), adalah sebuah matriks berukuran  .[5][6][7][8]

 

dengan setiap entri pada matriks   didefinisikan sebagai

 

untuk nilai   dan nilai  . Dengan kata lain, entri   adalah hasil yang didapatkan dengan mengalikan secara berpasang-pasangan entri di baris ke-  matriks   dengan entri di kolom ke-  matriks  , lalu menjumlahkan semua hasil perkalian ini. Intepretasi lain dari proses ini, entri   adalah hasil perkalian titik baris ke-  matriks   dengan kolom ke-  matriks  . Dengan demikian,   juga dapat ditulis sebagai

 
Hal ini menyebabkan hasil perkalian   hanya terdefinisi jika dan hanya jika banyaknya kolom di   sama dengan banyaknya baris di  ,[1] yang dalam kasus ini sebanyak  .

Dalam sebagian besar kasus, entri dari matriks akan berupa bilangan. Namun entri dari matriks dapat berupa sembarang objek matematika, asal memiliki sifat penjumlahan dan perkalian. Sifat ini mengartikan objek matematika tersebut haruslah asosiatif, penjumlahannya komutatif, dan perkaliannya distributif terhadap penjumlahan. Sebagai contoh, entri dari matriks dapat berupa matriks, lihat artikel tentang matriks blok.

IlustrasiSunting

Gambar berikut memberikan diagram hasil perkalian dari dua matriks   dan  , menunjukkan bagaimana setiap perpotongan di matriks hasil perkalian berkorespodensi dengan sebuah baris di   dan sebuah kolom di  .

 

Nilai pada matriks hasil perkalian, yang ditandai dengan simbol lingkaran, adalah:

 

Penggunaan yang fundamentalSunting

Secara historis, perkalian matriks diperkenalkan untuk membantu dan memperjelas perhitungan-perhitungan dalam aljabar linear.

Pemetaan linearSunting

Jika suatu ruang vektor memiliki basis yang terbatas, semua vektornya dapat dinyatakan secara unik oleh sebuah barisan skalar yang terhingga. Barisan ini dinamakan vektor koordinat, dengan entri-entrinya adalah koordinat dari vektor terhadap vektor-vektor basis. Vektor-vektor koordinat juga membentuk suatu ruang vektor lain, yang isomorfik dengan ruang vektor asalnya. Vektor koordinat umumnya disusun sebagai matriks kolom (juga disebut dengan vektor kolom), yakni sebuah matriks yang berisi satu kolom. Jadi, sebuah vektor kolom menyatakan suatu vektor koordinat, sekaligus vektor di ruang vektor asalnya.

Sebuah peta linear   dari suatu ruang vektor berdimensi   ke suatu ruang vektor berdimensi  , akan memetakan suatu vektor kolom

 

Menjadi vektor kolom

 

Dengan demikian, peta linear   dapat didefinisikan oleh sebuah matriks

 

dan pemetaan vektor kolom   dapat dinyatakan sebagai perkalian matriks

 

Misalkan   adalah suatu peta linear yang lain, yang memetakan ruang vektor berdimensi   ke suatu ruang vektor berdimensi  . Peta linear   dapat direpresentasikan sebagai sebuah matriks   berukuran  . Dengan menjabarkan perhitungan, dapat ditunjukkan matriks yang dihasilkan komposisi pemetaan   adalah matriks hasil perkalian  

Sistem persamaan linearSunting

Bentuk umum dari sebuah sistem persamaan linear adalah

 

Dengan menggunakan notasi yang dijelaskan di atas, sistem tersebut setara dengan persamaan matriks  

Sifat-sifat umumSunting

Perkalian matriks memiliki berapa sifat yang sama dengan perkalian pada umumnya. Namun, perkalian matriks tidak terdefinisi jika jumlah kolom pada faktor yang pertama berbeda dengan jumlah baris pada faktor yang kedua. Perkalian matriks juga tidak komutatif,[9] bahkan jika hasil perkalian tetap terdefinisi setelah urutan perkalian ditukar.[10][11]

Tidak komutatifSunting

Suatu operasi dikatakan komutatif jika, untuk sebarang dua elemen   dan   dengan hasil perkalian   yang terdefinisi, maka hasil perkalian   juga terdefinisi dan memenuhi hubungan   Jika   dan   masing-masing adalah matriks berukuran   dan  , maka   terdefinisi ketika  , dan   terdefinisi ketika  . Jadi, secara umum jika salah satu hasil perkalian terdefinisi, hasil perkalian yang lain (dengan urutan yang ditukar) tidak terdefinisi. Pada kasus  , maka kedua perkalian terdefinisi, tapi menghasilkan matriks dengan ukuran yang berbeda; sehingga tidak mungkin sama. Hanya pada kasus  , yakni ketika   dan   adalah matriks persegi dengan ukuran yang sama, kedua perkalian terdefinisi dan juga memiliki ukuran yang sama. Namun bahkan untuk kasus ini, secara umum berlaku

 

Sebagai contoh

 

tapi

 
Satu kasus khusus, sifat komutatif terjadi ketika   dan   adalah matriks persegi diagonal yang berukuran sama; maka  .[9]

Sifat distributifSunting

Perkalian matriks bersifat distributif terhadap penjumlahan matriks. Misalkan  ,  ,  , dan   masing-masing adalah matriks berukuran  ,  ,  , dan  . Sifat distributif mengartikan matriks memiliki sifat distributif (kiri)

 

dan sifat distributif (kanan)

 

[9]Sifat distributif ini dapat dituliskan dalam bentuk entri pada matriks, sebagai

 

 

Perkalian dengan skalarSunting

Jika   adalah sebuah matriks dan   adalah sebuah skalar, maka matriks   dan   dihasilkan dengan mengalikan (dari kiri atau dari kanan) semua entri di   dengan  . Ketika skalar   bersifat komutatif, didapatkan hubungan  

Pada kasus hasil perkalian   terdefinisi (dengan kata lain, banyaknya kolom di   sama dengan banyaknya baris di  ), akan berlaku

  dan  

Jika skalar bersifat komutatif, keempat matriks tersebut sama. Sifat ini muncul dari ke-bilinear-an (bilinearity) hasil kali skalar:

 

TransposSunting

Jika entri pada matriks bersifat komutatif, maka transpos dari hasil perkalian matriks-matriks adalah hasil perkalian dengan urutan yang dibalik, dari transpos dari matriks-matriks tersebut. Secara simbolis ini dinyatakan sebagai

 

dengan T menyatakan operasi transpos, yakni operasi yang mengubah kolom matriks menjadi baris dan sebaliknya. Hal ini tidak berlaku bagi matriks dengan entri yang tidak komutatif; karena entri-entri yang dihasilkan dari perkalian akan berubah ketika urutan perkalian dibalik.

Sifat asosiatifSunting

Untuk sebarang matriks  ,  , dan  , hasil perkalian   dan   terdefinisi jika dan hanya banyaknya kolom di   sama dengan banyaknya baris di  , dan banyaknya kolom di   sama dengan banyaknya baris di  . Jika salah satu hasil perkalian tersebut terdefinisi, hasil perkalian yang lain juga terdefinisi. Dalam kasus ini, matriks memiliki sifat asosiatif

 

Seperti sembarang operasi asosiatif lainnya, penggunaan tanda kurung tidak diperlukan, sehingga cukup menulis hasil perkalian tersebut sebagai   Sifat ini dapat diperumum ke perkalian yang melibatkan banyak matriks, asal dimensi mereka memungkinkan perkalian terjadi. Dengan kata lain, jika   adalah matriks-matriks, dengan banyaknya kolom   sama dengan banyak baris   untuk  , maka hasil perkalian

 

terdefinisi dan hasilnya tidak bergantung pada urutan perkalian yang dilakukan, selama urutan dari matriks-matriks tidak berubah.

Sifat ini dapat dibuktikan secara langsung tapi rumit dengan melakukan manipulasi penjumlahan. Sifat ini juga merupakan hasil dari fakta matriks menyatakan pemetaan linear. Dengan demikian, sifat asosiatif matriks adalah kasus spesifik dari sifat asosiatif komposisi fungsi.

Kompleksitas tidak asosiatifSunting

Walaupun hasil perkalian matriks tidak bergantung pada urutan operasi yang dilakukan (selama urutan matriks-matriks tidak diubah), kompleksitas komputasi perkalian dapat sangat bergantung pada urutan operasi. Sebagai contoh, misalkan  ,  , dan   masing-masing merupakan matriks berukuran  ,  , dan  . Menghitung   memerlukan   operasi perkalian; sedangkan menghitung   memerlukan   perkalian.

Algoritma-algoritma telah dikembangkan untuk mencari urutan perkalian yang terbaik. Ketika banyaknya matriks yang perlu dikali,  , meningkat, dapat ditunjukkan pemilihan urutan perkalian yang terbaik memiliki kompleksitas  

DetailSunting

perkalian matriks adalah suatu operasi biner yang menghasilkan suatu matriks dari dua matriks dengan entri dalam suatu medan, atau secara lebih umum dalam suatu gelanggang atau bahkan suatu semigelanggang. Produk matriks dirancang untuk menampilkan komposisi peta linear yang diwakili oleh matriks-matriks. Oleh sebab itu pengalian matriks merupakan operasi paling mendasar dalam bidang aljabar linier, dan karena itu banyaknya penerapannya di bidang matematika. Pengalian matriks juga merupakan operasi yang penting dalam matematika terapan, fisika, dan teknik.[12][13] Secara lebih rinci, jika A adalah suatu matriks n × m dan B adalah suatu matriks m × p, hasil pengalian matriks AB adalah suatu matriks n × p, dimana entri m di sepanjang baris A dikalikan dengan entri m di sepanjang kolom B dan dijumlahkan untuk menghasilkan suatu entri dari AB. Apabila dua peta linear diwakili oleh matriks-matriks, maka pengalian matriks mewakili komposisi dua peta.

Definisi produk matriks membutuhkan adanya entri-entri dari suatu semigelanggang, dan tidak membutuhkan pengalian unsur-unsur semigelanggang agar komutatif. Dalam banyak penerapan, unsur-unsur matriks menjadi bagian suatu medan, meskipun semigelanggang tropikal juga merupakan suatu pilihan umum untuk masalah jarak terpendek.[14] Bahkan dalam kasus matriks-matriks atas medan-medan, hasil pengaliannya pada umumnya tidak komutatif, meskipun dalam penjumlahan matriks bersifat asosiatif dan distributif. Matriks-matriks identitas (yaitu matriks persegi dimana entri-entrinya bernilai nol di luar diagonal utama dan 1 pada diagonal utama) adalah unsur-unsur identitas dari pengalian matriks. Maka dari itu, matriks n x n pada suatu gelanggang membentuk suatu gelanggang, yang tidak komutatif kecuali jika n=1 dan gelanggang dasarnya komutatif.

Catatan kakiSunting

  1. ^ a b Nykamp, Duane. "Multiplying matrices and vectors". Math Insight. Diakses tanggal September 6, 2020. 
  2. ^ O'Connor, John J.; Robertson, Edmund F., "Jacques Philippe Marie Binet", Arsip Sejarah Matematika MacTutor, Universitas St Andrews .
  3. ^ Lerner, R. G.; Trigg, G. L. (1991). Encyclopaedia of Physics (edisi ke-2nd). VHC publishers. ISBN 978-3-527-26954-9. 
  4. ^ Parker, C. B. (1994). McGraw Hill Encyclopaedia of Physics  (edisi ke-2nd). ISBN 978-0-07-051400-3. 
  5. ^ Lipschutz, S.; Lipson, M. (2009). Linear Algebra. Schaum's Outlines (edisi ke-4th). McGraw Hill (USA). hlm. 30–31. ISBN 978-0-07-154352-1. 
  6. ^ Riley, K. F.; Hobson, M. P.; Bence, S. J. (2010). Mathematical methods for physics and engineering. Cambridge University Press. ISBN 978-0-521-86153-3. 
  7. ^ Adams, R. A. (1995). Calculus, A Complete Course (edisi ke-3rd). Addison Wesley. hlm. 627. ISBN 0 201 82823 5. 
  8. ^ Horn, Johnson (2013). Matrix Analysis (edisi ke-2nd). Cambridge University Press. hlm. 6. ISBN 978 0 521 54823 6. 
  9. ^ a b c Weisstein, Eric W. "Matrix Multiplication". mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2020-09-06. 
  10. ^ Lipcshutz, S.; Lipson, M. (2009). "2". Linear Algebra. Schaum's Outlines (edisi ke-4th). McGraw Hill (USA). ISBN 978-0-07-154352-1. 
  11. ^ Horn, Johnson (2013). "0". Matrix Analysis (edisi ke-2nd). Cambridge University Press. ISBN 978-0-521-54823-6. 
  12. ^ Lerner, R. G.; Trigg, G. L. (1991). Encyclopaedia of Physics (edisi ke-2nd). VHC publishers. ISBN 3-527-26954-1. 
  13. ^ Parker, C. B. (1994). McGraw Hill Encyclopaedia of Physics (edisi ke-2nd). ISBN 0-07-051400-3. 
  14. ^ Motwani, Rajeev; Raghavan, Prabhakar (1995). Randomized Algorithms. Cambridge University Press. hlm. 280. ISBN 9780521474658.