Segi lima

(Dialihkan dari Pentagon)

Dalam geometri, segi lima (bahasa Inggris: pentagon) adalah poligon apapun yang bersisi lima. Meskipun begitu, istilah ini sering digunakan untuk merujuk kepada segi lima beraturan, di mana semua sisinya memiliki panjang yang sama dan seluruh sudutnya sama besar (108°). Segi lima terbagi menjadi dua jenis, sederhana dan memotong-diri-sendiri (self-intersecting). Segi lima reguler jenis kedua terjadi ketika ada dua sisi poligon yang saling berpotongan. Bangun segi lima reguler memotong-diri-sendiri disebut pentagram.

Segi lima
Regular polygon 5 annotated.svg
Sebuah segi lima sama beraturan
Sisi dan verteks5
Simbol Schläfli{5} Untuk segi lima reguler
Diagram Coxeter–DynkinCDW ring.pngCDW 5.pngCDW dot.png
Grup simetriDihedral (D5)
LuasBerbagai metode Lihat pula
Sudut dalam (derajat)108°
SifatCembung (konveks)

Segi lima beraturanSunting

Sebuah segi lima beraturan adalah bentuk khusus dari segi lima sama sisi. Segi lima ini memiliki simbol Schläfli {5} dan sudut interior sebesar 108°. Segi lima beraturan memiliki lima simetri pencerminan, dan simetri rotasi orde 5 (dengan sudut rotasi 72°, 144°, 216° dan 288°).

Segi lima beraturan memiliki lima sisi diagonal (yakni sisi yang menghubungkan dua titik sudut yang tidak saling bersebelahan). Perbandingan panjang sisi segi lima terhadap panjang sisi diagonal ini sama dengan rasio emas. Sedangkan panjang sisi tinggi (yakni jarak dari satu titik sudut ke sisi yang berlawanan) dan sisi lebar (jarak antara dua titik terpisah terjauh; sama dengan panjang sisi diagonal) dapat dihitung lewat persamaan

 
dengan   adalah panjang sisi segi lima dan   adalah jari-jari lingkaran luar dari segi lima. Luas dari segi lima beraturan dapat ditemukan dengan menggunakan persamaan
 
Jika segi lima beraturan dibatasi oleh lingkaran luar dengan jari-jari  , panjang sisi dan panjang diagonalnya memenuhi persamaan
 
dan luasnya dapat ditentukan dengan
 
Karena luas lingkaran luar adalah  , persamaan luas segi lima beraturan tersebut mengartikan segi lima beraturan mengisi kurang lebih 75.68% luas lingkaran luar.

Penurunan rumus luasSunting

Luas dari sembarang poligon beraturan adalah:

 
dengan   menyatakan keliling (perimeter) dari poligon dan   adalah jari-jari lingkaran dalam dari poligon tersebut. Dengan mensubtitusi nilai   dan   dari segi lima, akan didapatkan persamaan
 

dengan   menyatakan panjang sisi dari segi lima beraturan.

Jari-jari dalam (inradius)Sunting

Seperti sembarang poligon cembung beraturan yang lain, segi lima cembung beraturan memiliki lingkaran dalam. Panjgan jari-jari   dari lingkaran dalam dapat dihubungkan dengan panjang sisi   dari segi lima beraturan lewat persamaan

 

Konstruksi geometrisSunting

Segi lima beraturan dapat dibangun (dikontruksi, dibuat) dengan menggunakan jangka dan penggaris. Hal ini adalah akibat dari teorema Gauss-Wantzel dan fakta 5 merupakan bilangan prima Fermat. Ada banyak metode yang dikenal untuk membangun pentagon biasa. Beberapa metode tersebut dibahas di bawah ini.

Metode RichmondSunting

 
Gambar 1

Salah satu metode untuk membangun segi lima beraturan (dengan titik-titik sudut) terletak pada suatu lingkaran adalah metode yang dijelaskan oleh Richmond[1]. Metode ini dibahas lebih lanjut dalam buku Polyhedra oleh Cromwell.[2]

Gambar 1 menunjukkan konstruksi yang digunakan dalam metode Richmond untuk membuat sebuah sisi segi lima. Kedua sudut dari sisi ini berada pada sebuah lingkaran dengan jari-jari sebesar 1. Titik pusat dari lingkaran ini ditandai dengan huruf  , sedangkan titik   adalah titik tengah dari jari-jari lingkaran. garis   tegak lurus dengan titik  . Tahapan pertama metode ini adalah membagi sudut   sama besar, dan garis yang membagi sudut ini akan memotong garis   di titik  . Selanjutnya sebuah garis yang melalui titik   dan sejajar garis   dibentuk; garis ini akan memotong lingkaran di titik  . Segmen garis   adalah sisi segi lima yang dihasilkan metode ini.

Untuk menentukan panjang dari sisi ini, dua segitiga siku-siku   dan   digambarkan di bawah gambar lingkaran konstruksi. Menggunakan teorema Pythagoras, panjang hipotenusa (sisi miring) dari   adalah  . Panjang sisi   dari   dapat ditentukan dengan menggunakan rumus setengah sudut:

 

Dengan mensubtitusi nilai sinus dan kosinus dari sudut  , yang nilainya diketahui dari  , didapatkan

 

Jika   memang merupakan sisi dari segi lima beraturan, haruslah  . Menggabungkan   dan  , didapatkan   dan

 
Hal ini mengartikan  , yang berlaku pada segi lima beraturan.

Segi lima sama sisiSunting

 
Segi lima sama sisi yang dikonstruksi dengan menggunakan empat lingkaran.

Segi lima sama sisi adalah sebuah poligon dengan lima sisi yang sama panjang. Tetapi, besar sudut-sudut dalam dari poligon ini dapat bermacam-macam. Hal ini berbeda dengan segi lima beraturan yang semua sudutnya memiliki besar yang sama.

Segi lima dalam pengubinanSunting

 
Peubinan terbaik yang diketahui dari segi lima beraturan pada bidang, adalah sebuah struktur kisi ganda yang menutupi 92.131% permukaan bidan.

Segi lima beraturan tidak dapat diletakkan pada semua jenis pengubinan poligon-poligon beraturan.

Contoh segi lima di alamSunting

TumbuhanSunting

HewanSunting

Lihat jugaSunting

ReferensiSunting

  1. ^ Herbert W Richmond (1893). "Pentagon". 
  2. ^ Peter R. Cromwell (22 July 1999). Polyhedra. p. 63. ISBN 0-521-66405-5.