Titik (geometri): Perbedaan antara revisi

Konten dihapus Konten ditambahkan
HsfBot (bicara | kontrib)
k +{{Authority control}}
HsfBot (bicara | kontrib)
k Bot: tetapi (di awal kalimat) → namun
Baris 8:
Banyak objek yang dibangun di dalam geometri Euclid terdiri dari [[tak hingga]] banyaknya kumpulan titik-titik yang sesuai dengan aksioma-aksioma tertentu. Hal ini biasanya dinyatakan oleh [[himpunan (matematika)|himpunan]] titik-titik; misalnya, [[garis (geometri)|garis]] adalah himpunan tak hingga banyaknya titik-titik yang berbentuk <math>\, L = \lbrace (a_1,a_2,...a_n)|a_1c_1 + a_2c_2 + ... a_nc_n = d \rbrace </math>, di mana <math>\, c_1</math> melalui <math>\, c_n</math> dan <math>\, d</math> adalah konstanta dan n adalah dimensi ruang. Juga terdapat konstruksi-konstruksi serupa yang mendefinisikan [[bidang (geometri)|bidang]], [[ruas garis]], dan konsep-konsep lainnya yang saling berkaitan.
 
Selain mendefinisikan titik dan konstruksi yang berkaitan dengan titik, Euclid juga mempostulatkan gagasan kunci tentang titik; dia mengaku bahwa dua titik sembarang dapat dihubungkan oleh sebuah garis lurus. Ini dapat dengan mudah diperiksa di bawah perluasan modern geometri Euklides, dan menyisakan dampak-dampak pada introduksinya, mengizinkan konstruksi hampir semua konsep geometri tentang waktu. TetapiNamun, postulat Euclid tentang titik tidak pernah lengkap, tidak pula definitif, karena dia kadang-kadang mengasumsikan fakta tentang titik yang tidak mengikuti secara langsung aksioma-aksiomanya, misalnya pengurutan titik-titik pada garis atau keujudan titik-titik tertentu. Meskipun demikian, perluasan modern sistem ini berhasil menghilangkan anggapan-anggapan ini.
 
== Titik di dalam cabang-cabang matematika ==