Aluminium: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k Bot: Penggantian teks otomatis (-Perancis +Prancis)
LaninBot (bicara | kontrib)
k namun (di tengah kalimat) → tetapi
Baris 1:
{{kotak info aluminium}}
'''Aluminium''' ialah unsur kimia. Lambang aluminium ialah ''Al'', dan [[nomor atom]]nya 13. Aluminium ialah logam paling berlimpah. Aluminium bukan merupakan jenis logam berat, namuntetapi merupakan elemen yang berjumlah sekitar 8% dari permukaan [[bumi]] dan paling berlimpah ketiga. Aluminium terdapat dalam penggunaan aditif makanan, [[antasida]], [[buffered aspirin]], [[astringents]], semprotan hidung, [[antiperspirant]], [[air]] minum, [[knalpot]] [[mobil]], [[asap tembakau]], penggunaan [[aluminium foil]], peralatan masak, [[kaleng]], [[keramik]] , dan [[kembang api]].
 
Aluminium merupakan konduktor [[listrik]] yang baik. Ringan dan kuat. Merupakan konduktor yang baik juga buat panas. Dapat ditempa menjadi lembaran, ditarik menjadi kawat dan di[[ekstrusi]] menjadi batangan dengan bermacam-macam penampang. Tahan [[korosi]].
Baris 11:
 
== Proses pemurnian ==
Orang pertama yang berhasil memisahkan aluminium dari senyawanya adalah Orsted pada tahun 1825 dengan cara mereduksi [[aluminium klorida]], namuntetapi belum dalam keadaan murni. Aluminium murni ditemukan oleh Wohler dalam bentuk serbuk berwarna abu-abu pada tahun 1827 dengan memodifikasi proses Orsted.
 
Kini proses yang digunakan untuk memperoleh aluminum secara besar-besaran digunakan proses Hall-Heroult. Cara ini ditemukan oleh dua orang yang umurnya sama (23 tahun) namun ditempat yang berbeda yakni Charles Martin Hall di [[Amerika Serikat|Amerika]] dan Heroult di [[Paris]] pada tahun 1886. Proses ini menjadikan kedua orang ini kaya dalam waktu singkat dan meninggal dunia pada tahun yang sama pula (1914). Setelah ditemukan cara ini harga aluminium yang awalnya sangat mahal turun secara drastis.
Baris 66:
Sifat teknik bahan aluminium murni dan aluminium paduan dipengaruhi oleh konsentrasi bahan dan perlakuan yang diberikan terhadap bahan tersebut. Aluminium terkenal sebagai bahan yang tahan terhadap korosi. Hal ini disebabkan oleh fenomena [[pasivasi (kimia)|pasivasi]], yaitu proses pembentukan lapisan [[aluminium oksida]] di permukaan logam aluminium segera setelah logam terpapar oleh udara bebas. Lapisan aluminium oksida ini mencegah terjadinya oksidasi lebih jauh. Namun, pasivasi dapat terjadi lebih lambat jika dipadukan dengan logam yang bersifat lebih katodik, karena dapat mencegah oksidasi aluminium.
;Kekuatan tensil
Kekuatan tensil adalah besar [[Tegangan (mekanika)|tegangan]] yang didapatkan ketika dilakukan pengujian tensil. Kekuatan tensil ditunjukkan oleh nilai tertinggi dari tegangan pada kurva tegangan-regangan hasil pengujian, dan biasanya terjadi ketika terjadinya necking. Kekuatan tensil bukanlah ukuran kekuatan yang sebenarnya dapat terjadi di lapangan, namuntetapi dapat dijadikan sebagai suatu acuan terhadap kekuatan bahan.
 
Kekuatan tensil pada aluminium murni pada berbagai perlakuan umumnya sangat rendah, yaitu sekitar 90 MPa, sehingga untuk penggunaan yang memerlukan kekuatan tensil yang tinggi, aluminium perlu dipadukan. Dengan dipadukan dengan logam lain, ditambah dengan berbagai perlakuan termal, aluminium paduan akan memiliki kekuatan tensil hingga 580 MPa (paduan 7075).
Baris 76:
Ductility didefinisikan sebagai sifat mekanis dari suatu bahan untuk menerangkan seberapa jauh bahan dapat diubah bentuknya secara plastis tanpa terjadinya retakan. Dalam suatu pengujian tensil, ductility ditunjukkan dengan bentuk neckingnya; material dengan ductility yang tinggi akan mengalami necking yang sangat sempit, sedangkan bahan yang memiliki ductility rendah, hampir tidak mengalami necking. Sedangkan dalam hasil pengujian tensil, ductility diukur dengan skala yang disebut elongasi. Elongasi adalah seberapa besar pertambahan panjang suatu bahan ketika dilakukan uji kekuatan tensil. Elongasi ditulis dalam persentase pertambahan panjang per panjang awal bahan yang diujikan.
 
Aluminium murni memiliki ductility yang tinggi. Aluminium paduan memiliki ductility yang bervariasi, tergantung konsentrasi paduannya, namuntetapi pada umumnya memiliki ductility yang lebih rendah dari pada aluminium murni, karena ductility berbanding terbalik dengan kekuatan tensil, serta hampir semua aluminum paduan memiliki kekuatan tensil yang lebih tinggi dari pada aluminium murni.
 
== Aluminium dan Paduan/Alloy ==
Baris 84:
Keberadaan [[magnesium]] hingga 15,35% dapat menurunkan titik lebur [[logam paduan]] yang cukup drastis, dari 660 oC hingga 450 oC. Namun, hal ini tidak menjadikan aluminium paduan dapat ditempa menggunakan panas dengan mudah karena [[korosi]] akan terjadi pada suhu di atas 60 oC. Keberadaan magnesium juga menjadikan logam paduan dapat bekerja dengan baik pada temperatur yang sangat rendah, di mana kebanyakan logam akan mengalami failure pada temperatur tersebut.
;Paduan Aluminium-Tembaga
Paduan aluminium-[[tembaga]] juga menghasilkan sifat yang keras dan kuat, namuntetapi rapuh. Umumnya, untuk kepentingan penempaan, paduan tidak boleh memiliki konsentrasi tembaga di atas 5,6% karena akan membentuk senyawa CuAl2 dalam logam yang menjadikan logam rapuh.
;Paduan Aluminium-Mangan
Penambahan [[mangan]] memiliki akan berefek pada sifat dapat dilakukan pengerasan tegangan dengan mudah (work-hardening) sehingga didapatkan logam paduan dengan kekuatan tensil yang tinggi namun tidak terlalu rapuh. Selain itu, penambahan mangan akan meningkatkan titik lebur paduan aluminium.
Baris 94:
Penambahan [[skandium]] ke aluminium membatasi pemuaian yang terjadi pada paduan, baik ketika pengelasan maupun ketika paduan berada di lingkungan yang panas. Paduan ini semakin jarang diproduksi, karena terdapat paduan lain yang lebih murah dan lebih mudah diproduksi dengan karakteristik yang sama, yaitu paduan [[titanium]]. Paduan Al-Sc pernah digunakan sebagai bahan pembuat pesawat tempur Rusia, MIG, dengan konsentrasi Sc antara 0,1-0,5% (Zaki, 2003, dan Schwarz, 2004).
;Paduan Aluminium-Besi
[[Besi]] (Fe) juga kerap kali muncul dalam aluminium paduan sebagai suatu "kecelakaan". Kehadiran besi umumnya terjadi ketika pengecoran dengan menggunakan cetakan besi yang tidak dilapisi batuan [[kapur]] atau keramik. Efek kehadiran Fe dalam paduan adalah berkurangnya kekuatan tensil secara signifikan, namuntetapi diikuti dengan penambahan kekerasan dalam jumlah yang sangat kecil. Dalam paduan 10% silikon, keberadaan Fe sebesar 2,08% mengurangi kekuatan tensil dari 217 hingga 78 MPa, dan menambah skala Brinnel dari 62 hingga 70. Hal ini terjadi akibat terbentuknya kristal Fe-Al-X, dengan X adalah paduan utama aluminium selain Fe.
;Aluminium Paduan Cor
Komposisi utama aluminium paduan cor pada umumnya adalah [[tembaga]], [[silikon]], dan [[magnesium]]. Al-Cu memberikan keuntungan yaitu kemudahan dalam pengecoran dan memudahkan pengerjaan permesinan. Al- Si memmberikan kemudahan dalam pengecoran, kekuatan, ketahanan pada temperatur tinggi, dan pemuaian yang rendah. Sifat pemuaian merupakan sifat yang penting dalam logam cor dan [[Ekstrusi (manufaktur)|ekstrusi]], yang pada umumnya merupakan bagian dari [[mesin]]. Al-Mg juga memberikan kekuatan, dan lebih baik dibandingkan Al-Si karena memiliki ketahanan yang lebih tinggi hingga logam mengalami deformasi plastis (elongasi). Namun konsentrasi lebih dari 10% dapat mengurangi kemudahan dalam pengecoran.
Baris 109:
Secara teori 100% aluminium bisa didaur ulang tanpa kehilangan beratnya. Namun dalam praktik, proses daur-ulang menyebabkan susutnya berat yang signifikan. Daur ulang melibatkan proses pencairan aluminium, sebuah proses yang membutuhkan hanya 5% dari [[energi]] yang digunakan untuk memproduksi aluminium dari [[bijih]]. Dalam proses ini aluminium mengalami kehilangan berat hingga 15% dari berat bahan baku. Hilangnya berat disebabkan terjadinya oksidasi oleh udara selama berlangsungnya proses pelelehan, menjadi oksida aluminium (Al2O3). Persentase penurunan berat juga disebabkan jenis aluminium yang di daur ulang. Aluminium plat tipis memiliki tingkat risiko kehilangan berat yang jauh lebih besar dibanding aluminium yang lebih plat tebal.
 
Meskipun aluminium hasil [[daur ulang]] memiliki kadar yang lebih rendah dibanding aluminium hasil [[produksi]], namuntetapi Aluminium hasil daur ulang masih mempertahankan sifat fisik yang sama dengan aluminium hasil pabrikasi. Hasil aluminium daur ulang disebut dengan istilah aluminium sekunder. Aluminium sekunder diproduksi dalam berbagai format dan digunakan di 80% dari suntikan paduan. Penggunaan lain yang penting adalah [[Ekstrusi (manufaktur)|ekstrusi]].
 
Sampah putih yang merupakan limbah dari produksi aluminium primer dan dari daur ulang sekunder masih mengandung sejumlah aluminium yang dapat diekstraksi industri. Proses ini menghasilkan billet aluminium, bersama-sama dengan bahan limbah yang sangat kompleks. Limbah proses aluminium sangat sulit dikelola. Limbah yang terkena air akan melepaskan campuran gas (termasuk, antara lain, hidrogen, asetilena, dan amonia), yang secara spontan menyatu saat kontak dengan udara; kontak limbah dengan udara lembab akan melepaskan gas [[amonia]]. Meskipun adanya kesulitan-kesulitan ini, limbah sisa pemrosesan aluminium bisa digunakan sebagai pengisi dalam [[aspal]], [[beton]], dan sebagai bahan baku pembuatan bata tahan api.