Buka menu utama

Perubahan

Tidak ada perubahan ukuran, 1 tahun yang lalu
Menolak 2 perubahan teks terakhir (oleh 180.243.172.87 dan HsfBot) dan mengembalikan revisi 12973660 oleh Hidayatsrf
[[Berkas:Euclid.jpg|thumb|272px|[[Euklides]], matematikawan Yunani, abad ke-3 SM, seperti yang dilukiskan oleh [[Raffaello Sanzio]] di dalam detail ini dari ''[[Sekolah Athena]]''.<ref>Tidak ada perupaan atau penjelasan tentang wujud fisik Euklides yang dibuat selama masa hidupnya yang masih bertahan sebagai kekunoan. Oleh karena itu, penggambaran Euklides di dalam karya seni bergantung pada daya khayal seorang seniman (''lihat [[Euklides]]'').</ref>]]
 
'''Matematika''' (dari [[bahasa Yunani]]: ''μαθηματικά'' - ''mathēmatiká'') adalah studi [[besaran]], [[struktur]], [[ruang]], dan [[kalkulus|perubahan]]. Para [[matematikawan]] mencari berbagai [[pola]],<ref>[[Lynn Steen]] (29 April 1988). ''[[:en:The Science of Patterns|The Science of Patterns]]'' [[:en:Science (journal)|''Science'']], 240: 611–616. dan diikhtisarkan di [http://www.ascd.org/portal/site/ascd/template.chapter/menuitem.1889bf0176da7573127855b3e3108a0c/?chapterMgmtId=f97433df69abb010VgnVCM1000003d01a8c0RCRD Association for Supervision and Curriculum Development.], ascd.org</ref><ref>[[Wikipedia:en:Keith Devlin|Keith Devlin]], ''Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe'' (Scientific American Paperback Library) 1996, ISBN 978-0-7167-5047-5</ref> merumuskan [[konjektur]] baru, dan membangun kebenaran melalui [[metode deduksi]] yang [[ketat]] diturunkan dari [[aksioma|aksioma-aksioma]] dan [[definisi|definisi-definisi]] yang bersesuaian.<ref>Jourdain.</ref>
 
Terjadi perdebatan tentang apakah objek-objek matematika seperti [[bilangan]] dan [[titik (geometri)|titik]] sudah ada di semesta, jadi ditemukan, atau ciptaan manusia. Seorang matematikawan [[Benjamin Peirce]] menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".<ref>Peirce, p.97</ref> Namun, walau matematika pada kenyataannya sangat bermanfaat bagi kehidupan, perkembangan sains dan teknologi, sampai upaya melestarikan alam, matematika hidup di alam gagasan, bukan di realita atau kenyataan. Dengan tepat, [[Albert Einstein]] menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."<ref name=certain/> Makna dari "Matematika tak merujuk kepada kenyataan" menyampaikan pesan bahwa gagasan matematika itu ideal dan steril atau terhindar dari pengaruh manusia. Uniknya, kebebasannya dari kenyataan dan pengaruh manusia ini nantinya justru memungkinkan penyimpulan pernyataan bahwa semesta ini merupakan sebuah struktur matematika, menurut [[:en:Max Tegmark|Max Tegmark]]. Jika kita percaya bahwa realita di luar semesta ini haruslah bebas dari pengaruh manusia, maka harus struktur matematika lah semesta itu.
Untuk memperjelas [[:en:foundations of mathematics|dasar-dasar matematika]], bidang [[logika matematika]] dan [[teori himpunan]] dikembangkan, juga [[teori kategori]] yang masih dikembangkan. Kata majemuk "krisis dasar" mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada [[dasawarsa]] 1900-an sampai 1930-an.<ref>Luke Howard Hodgkin & Luke Hodgkin, ''A History of Mathematics'', Oxford University Press, 2005.</ref> Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk [[:En:controversy over Cantor's set theory|kontroversi teori himpunan Cantor]] dan [[:En:Brouwer–Hilbert controversy|kontroversi Brouwer-Hilbert]].
 
Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja [[sistem aksioma|aksiomatis]] yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi [[Teorema ketaklengkapan Gödel|Teori ketaklengkapan kedua Gödel]], mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu [[:en:formal system|sistem formal]] yang berisi aritmetika dasar, jika ''suara'' ( maksudnya semua teorema yang dapat dibuktikan adalah benar ), maka ''tak-lengkap'' (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan ''di dalam sistem itu'').
 
Gödel menunjukkan cara mengonstruksi, kumpulan sembarang aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam [[:En:Computability theory|teori rekursi]], [[:en:model theory|teori model]], [[:en:proof theory|teori pembuktian]] terpaut dekat dengan [[ilmu komputer]] [[:en:Theoretical computer science|teoretis]].