Nukleosintesis: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
EmausBot (bicara | kontrib)
k Bot: Migrasi 26 pranala interwiki, karena telah disediakan oleh Wikidata pada item d:Q471702
HsfBot (bicara | kontrib)
k Bot: Perubahan kosmetika
Baris 1:
'''Nukleosintesis''' adalah proses penciptaan inti-inti atom baru dari [[nukleon|nukleon-nukleon]] (proton dan neutron) yang sudah ada sebelumnya. Diduga bahwa nukleon-nukleon primordial sendiri terbentuk dari [[plasma kuark-gluon]] dari Big Bang ([[Big Bang|Dentuman Besar]]) ketika ia mendingin di bawah dua triliun [[Kelvin]]. Beberapa menit kemudian, bermula hanya dengan [[proton]] dan [[neutron]], terbentuklah inti-inti aton sampai [[litium]] dan [[berilium]] (kedua-duanya berbilangan massa 7), tetapi hanya berjumlah relatif kecil. Kemudian proses fusi secara esensial berhenti karena [[suhu]] dan [[kerapatan]] berkurang, karena semesta terus saja mengembang. Proses [[Nukleosintesis Big Bang|nukleosintesis primordial]] pertama ini dapat juga disebut sebagai '''nukleogenesis'''.
 
Nukleosintesis unsur-unsur yang lebih berat berikutnya memerlukan ledakan bintang-bintang berat dan [[supernova]]. Ini terjadi secara teoretis karena hidrogen dan helium dari Big Bang (mungkin dipengaruhi oleh konsentrasi [[materi gelap]]), mengembun menjadi bintang-bintang perdana 500 juta tahun setelah Big Bang. Unsur-unsur yang tercipta di dalam nukleosintesis bintang terentang pada [[nomor atom]] 6 ([[karbon]]) sampai sekurang-kurangnya 98 ([[kalifornium]]), yang sudah dideteksi dari spektra dari beberapa supernova. Sintesis unsur-unsur yang lebih berat ini muncul karena dua hal, yaitu [[fisi nuklir]] (termasuk penangkapan neutron ganda lambat dan cepat) atau [[fisi nuklir]], kadang-kadang diikuti oleh [[peluruhan beta]].
 
Sebaliknya, banyak proses bintang sebenarnya cenderung pada pemecahan [[deuterium]] dan isotop-isotop berilium, litium, dan [[boron]] yang ada di dalam bintang, setelah pembentukan primordial mereka pada saat Big Bang. Kuantitas unsur-unsur yang lebih ringan ini yang hadir di alam semesta sekarang kemudian dianggap terbentuk terutama melalui miliaran tahun [[sinar kosmos]] (terutama proton berenergi tinggi) yang memediasi pecahnya unsur-unsur yang lebih berat yang ada pada debu dan gas antarbintang.
Baris 8:
Gagasan pertama tentang nukleosintesis adalah bahwa [[unsur kimia]] diciptakan pada permulaan alam semesta, tetapi tidak ada jalan cerita fisika yang berjaya menjelaskannya. Hidrogen dan helium jelas-jelas jauh lebih melimpah daripada kelimpahan unsur-unsur lainnya (semuanya itu hanya berjumlah kurang dari 2% massa [[tata surya]], dan diduga tata bintang lainnya pun sedemikian). Pada saat yang sama, jelas bahwa karbon adalah unsur yang paling melimpah berikutnya, dan juga terdapat kecenderungan umum yang mengarah pada kelimpahan unsur-unsur ringan, khususnya mereka yang terdiri dari semua bilangan inti atom helium-4.
 
[[Arthur Stanley Eddington]] adalah yang pertama menganjurkan pada tahun 1920 bahwa bintang mendapatkan energi melalui hidrogen yang berfusi membentuk helium, tetapi gagasan ini pada umumnya belum dapat diterima karena mekanisme nuklir yang cacat. Segera beberapa tahun kemudian, sebelum Perang Dunia II, [[Hans Bethe]] adalah yang pertama memberikan mekanisme nuklir yang diperlukan, di mana hidrogen berfusi membentuk helium. Tetapi, kedua-dua karya dini tentang daya bintang ini tidak mampu menjelaskan asal mula unsur-unsur yang lebih berat daripada helium.
 
Karya asli [[Fred Hoyle]] tentang nukleosintesis unsur-unsur yang lebih berat di dalam bintang muncul setelah Perang Dunia II.<ref>[http://nobelprize.org/nobel_prizes/physics/laureates/1983/fowler-autobio.html Otobiografi William A. Fowler]</ref> Karya ini menyertakan penciptaan semua unsur yang berat di dalam bintang selama proses evolusi nuklir dari komposisi mereka, mulai dari hidrogen. Hoyle mengajukan bahwa hidrogen diciptakan terus menerus di alam semesta dari vakum dan energi, tanpa keperluan akan permulaan alam semesta.
Baris 41:
{{utama|Proses r|Proses rp|Nukleosintesis supernova}}
 
Nukleosintesis eksplosif melibatkan [[nukleosintesis supernova]], dan menghasilkan unsur-unsur yang lebih berat daripada besi oleh suatu hamburan reaksi nuklir yang intensif yang biasanya berlangsung hanya dalam beberapa detik pada peristiwa ledakan inti supernova. Di dalam lingkungan supernova yang penuh ledakan, unsur-unsur antara [[silikon]] dan nikel disintesis oleh fusi yang cepat. Juga di dalam [[supernova]], proses lanjut nukleosintesis dapat terjadi, seperti [[proses r]], di mana isotop-isotop yang paling banyak neutronnya dari unsur-unsur yang lebih berat daripada nikel dihasilkan oleh penyerapan yang cepat dari [[neutron]] bebas yang dilepaskan ketika ledakan terjadi. Kejadian ini bertanggung jawab atas gugus alami unsur-unsur radioaktif, seperti [[uranium]] dan [[torium]], juga isotop-isotop yang paling banyak neutronnya dari unsur-unsur berat.
 
[[Proses rp]] melibatkan penyerapan cepat [[proton]] bebas juga neutron, tetapi perannya kurang begitu pasti.
 
Nukleosintesis eksplosif terjadi terlalu cepat untuk peluruhan radioaktif untuk menaikkan jumlah neutron, sehingga ada banyak kelimpahan isotop yang sama jumlah proton dan neutronnya disintesis oleh [[proses alfa]] untuk menghasilkan nuklida-nuklida yang mengandung seluruh bilangan inti atom helium, sampai 16 (mewakili <sup>64</sup>Ge). Nuklida-nuklida itu stabil hingga <sup>40</sup>Ca (terbuat dari 10 inti atom helium), tetapi inti yang lebih berat dengan jumlah proton dan neutron yang sama adalah radioaktif. Bagaimanapun, proses alfa berlanjut untuk memengaruhi penciptaan [[isobar]] nuklida-nuklida ini, sekurang-kurangnya termasuk nuklida radioaktif <sup>44</sup>Ti , <sup>48</sup>Cr, <sup>52</sup>Fe, <sup>56</sup>Ni, <sup>60</sup>Zn, dan <sup>64</sup>Ge, yang sebagian besar di antaranya (memelihara <sup>44</sup>Ti dan <sup>60</sup>Zn) diciptakan di dalam kelimpahan itu karena meluruh setelah ledakan untuk menciptakan isotop stabil yang paling melimpah dari unsur-unsur yang berpadanan pada tiap-tiap bobot atom. Dengan demikian, isotop-isotop berpadanan yang paling banyak ditemui (melimpah) dari unsur-unsur yang dihasilkan menurut cara ini adalah <sup>48</sup>Ti, <sup>52</sup>Cr, <sup>56</sup>Fe, dan <sup>64</sup>Zn. Banyak peluruhan itu diiringi oleh pelepasan garis-garis sinar-gama yang mampu mengenali isotop yang baru saja tercipta pada saat ledakan terjadi.