Bulan: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k Melindungi "Bulan": Vandalisme berulang ([Sunting=Hanya untuk pengguna terdaftar otomatis] (kedaluwarsa 11 Januari 2016 20.47 (UTC)) [Pindahkan=Hanya untuk pengguna terdaftar otomatis] (kedaluwarsa 11 Januari 2016 20.47 (UTC))
JThorneBOT (bicara | kontrib)
clean up, replaced: Rujukan → Referensi, removed: {{Link FA|en}}, {{Link FA|de}}
Baris 44:
| mean_temp_2 = -143º C
| max_temp_2 = -43º C
 
 
| atmosphere_ref =<ref name="L06"/>
Baris 55 ⟶ 54:
'''Bulan''' adalah [[satelit alami]] [[Bumi]] satu-satunya{{efn|name=near-Earth asteroids}}<ref name="Morais2002" /> dan merupakan bulan [[Daftar satelit alami|terbesar kelima]] dalam [[Tata Surya]]. Bulan juga merupakan satelit alami terbesar di Tata Surya menurut ukuran [[planet]] yang diorbitnya,{{efn|name=Charon and Pluto}} dengan diameter 27%, kepadatan 60%, dan [[massa]] {{frac|1|81}} (1.23%) dari Bumi. Di antara satelit alami lainnya, Bulan adalah satelit terpadat kedua setelah [[Io (bulan)|Io]], satelit [[Yupiter]].
 
Bulan berada pada [[rotasi sinkron]] dengan Bumi, yang selalu memperlihatkan sisi yang sama pada Bumi, dengan [[sisi dekat Bulan|sisi dekat]] ditandai oleh [[Maria Bulan|mare]] vulkanik gelap yang terdapat di antara dataran tinggi kerak yang terang dan [[kawah tubrukan]] yang menonjol. Bulan adalah benda langit yang paling [[Luminositas|terang]] setelah [[Matahari]]. Meskipun Bulan tampak sangat putih dan terang, permukaan Bulan sebenarnya gelap, dengan [[reflektansi|tingkat kecerahan]] yang sedikit lebih tinggi dari aspal cair. Sejak zaman kuno, posisinya yang menonjol di langit dan [[fase bulan|fasenya]] yang teratur telah memengaruhi banyak budaya, termasuk [[Bulan#nama dan etimologi|bahasa]], [[Kalender Bulan|penanggalan]], [[Bulan dalam fiksi|seni]], dan [[Deifikasi Bulan|mitologi]]. Pengaruh gravitasi Bulan menyebabkan terjadinya [[Pasang surut|pasang surut]] di lautan dan [[Akselerasi pasang surut|pemanjangan waktu]] pada hari di Bumi. Jarak orbit Bulan dari Bumi saat ini adalah sekitar tiga puluh kali dari diameter Bumi, yang menyebabkan ukuran Bulan yang muncul di langit hampir sama besar dengan ukuran Matahari, sehingga memungkinkan Bulan untuk menutupi Matahari dan mengakibatkan terjadinya [[gerhana matahari]] total. Jarak linear Bulan dari Bumi saat ini meningkat dengan laju 3.82±0.07&nbsp;cm per tahun, meskipun laju ini tidak konstan.<ref>http://lasp.colorado.edu/life/GEOL5835/Moon_presentation_19Sept.pdf</ref>
 
Bulan diperkirakan terbentuk sekitar 4,5 miliar tahun yang lalu, tak lama setelah pembentukan Bumi. Meskipun terdapat sejumlah hipotesis mengenai asal usul Bulan, hipotesis yang paling diterima saat ini menjelaskan bahwa Bulan terbentuk dari serpihan-serpihan yang terlepas setelah sebuah benda langit seukuran [[Mars]] [[Hipotesis tubrukan besar|bertubrukan]] dengan Bumi.
 
Bulan adalah satu-satunya [[benda langit]] selain Bumi yang telah [[Pendaratan di Bulan|didarati oleh manusia]]. [[Program Luna]] [[Uni Soviet]] adalah wahana pertama yang mencapai Bulan dengan [[pesawat ruang angkasa]] nirawak pada tahun 1959; [[program Apollo]] [[NASA]] [[Amerika Serikat]] merupakan misi luar angkasa berawak satu-satunya yang telah mencapai Bulan hingga saat ini, dimulai dengan peluncuran misi berawak [[Apollo 8]] yang mengorbit Bulan pada tahun 1968, dan diikuti oleh enam misi pendaratan berawak antara tahun 1969 dan 1972, yang pertama adalah [[Apollo 11]]. Misi ini kembali ke Bumi dengan membawa 380 &nbsp;kg [[batuan Bulan]], yang digunakan untuk mengembangkan pemahaman [[geologi]] mengenai asal usul, pembentukan [[Struktur dalam Bulan|struktur dalam]], dan [[Geologi Bulan|sejarah geologi Bulan]].
 
Setelah misi [[Apollo 17]] pada 1972, Bulan hanya disinggahi oleh pesawat ruang angkasa nirawak. Misi-misi tersebut pada umumnya merupakan misi orbit; sejak tahun 2004, [[Jepang]], [[Tiongkok]], [[India]], [[Amerika Serikat]], dan [[Badan Luar Angkasa Eropa]] telah meluncurkan wahana pengorbit Bulan, yang turut bersumbangsih terhadap penemuan [[Air Bulan|es air]] di kawah kutub Bulan. Pasca Apollo, dua negara juga telah mengirimkan misi [[Rover (penjelajahan luar angkasa)|rover]] ke Bulan, yakni misi [[Lunokhod]] Soviet terakhir pada tahun 1973, dan misi berkelanjutan [[Chang'e 3]] RRC, yang meluncurkan [[Yutu (rover)|rover Yutu]] pada tanggal 14 Desember 2013.
Baris 82 ⟶ 81:
<ref>{{cite web |url=http://phys.org/news/2013-09-moon-younger-thought.html |title=Phys.org's account of Carlson's presentation to the Royal Society |accessdate=2013-10-13}}</ref> Hipotesis ini antara lain menjelaskan bahwa fisi Bulan berasal dari kerak Bumi akibat [[gaya sentrifugal]],<ref name="Binder" /><ref name="BotM" /> penangkapan [[gravitasi]] sebelum pembentukan Bulan,<ref name="Mitler" /> dan pembentukan Bumi dan Bulan secara bersama-sama di [[cakram akresi]] primordial.<ref name="BotM"/> Hipotesis ini tidak menjelaskan tinggi [[momentum sudut]] dari sistem Bumi-Bulan.<ref>{{cite journal|last=Stevenson |first=D.J. |title=Origin of the moon–The collision hypothesis |journal=Annual Review of Earth and Planetary Sciences |year=1987 |volume=15|issue=1 |pages=271–315 |bibcode=1987AREPS..15..271S |doi=10.1146/annurev.ea.15.050187.001415}}</ref>
 
Hipotesis yang berlaku saat ini menjelaskan bahwa sistem Bumi-Bulan terbentuk akibat [[Hipotesis tubrukan besar|tubrukan besar]], ketika benda langit seukuran [[Mars]] (bernama ''[[Theia (planet)|Theia]]'') bertabrakan dengan [[Sejarah Bumi|proto-Bumi]] yang baru terbentuk, memuntahkan material ke orbit di sekitarnya yang kemudian berkumpul untuk membentuk Bulan.<ref name="taylor1998" /> Hipotesis ini mungkin merupakan hipotesis yang paling menjelaskan mengenai asal usul Bulan, meskipun penjelasannya tidak sempurna.
 
Tubrukan besar diperkirakan umum terjadi pada awal pembentukan Tata Surya. Pemodelan simulasi komputer mengenai tubrukan besar sesuai dengan ukuran momentum sudut sistem Bumi-Bulan dan ukuran inti Bulan yang kecil. Simulasi ini juga menunjukkan bahwa sebagian besar materi pada Bulan berasal dari planet penabrak, bukannya dari proto-Bumi.<ref>{{cite journal|last=Canup |first=R. |coauthors=Asphaug, E. |title=Origin of the Moon in a giant impact near the end of Earth's formation |journal=Nature |volume=412 |pages=708–712 |year=2001 |doi=10.1038/35089010 |pmid=11507633 |issue=6848 |bibcode=2001Natur.412..708C}}</ref> Akan tetapi, pengujian terbaru menunjukkan bahwa sebagian besar materi Bulan berasal dari Bumi, bukannya dari penabrak.<ref>{{cite web|url=http://news.nationalgeographic.com/news/2007/12/071219-moon-collision.html |title=Earth-Asteroid Collision Formed Moon Later Than Thought |publisher=News.nationalgeographic.com |date=28 October 2010 |accessdate=7 May 2012}}</ref><ref>http://digitalcommons.arizona.edu/objectviewer?o=uadc://azu_maps/Volume43/NumberSupplement/Touboul.pdf</ref><ref>{{cite journal | doi = 10.1038/nature06428 | title = Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals | year = 2007 | last1 = Touboul | first1 = M. | last2 = Kleine | first2 = T. | last3 = Bourdon | first3 = B. | last4 = Palme | first4 = H. | last5 = Wieler | first5 = R. | journal = Nature | volume = 450 | issue = 7173 | pages = 1206–9 | pmid = 18097403 |bibcode = 2007Natur.450.1206T }}</ref> Bukti [[meteorit]] menunjukkan bahwa materi benda langit lainnya seperti [[Mars]] dan [[Vesta (asteroid)|Vesta]] memiliki oksigen dan komposisi [[isotop]] yang sangat berbeda dengan Bumi, sedangkan Bulan dan Bumi memiliki komposisi isotop yang hampir identik. Pencampuran materi yang menguap pasca tubrukan antara benda langit pembentuk Bulan dengan Bumi diperkirakan menyamakan komposisi isotop mereka,<ref name="Pahlevan2007" /> meskipun hal ini masih diperdebatkan.<ref>{{cite journal|last=Nield |first=Ted |title=Moonwalk (summary of meeting at Meteoritical Society's 72nd Annual Meeting, Nancy, France) |journal=Geoscientist |volume=19 |page=8 |year=2009|url =http://www.geolsoc.org.uk/gsl/geoscientist/geonews/page6072.html}}</ref>
 
Besarnya energi yang dilepaskan saat terjadinya tubrukan besar dan akresi materi di orbit Bumi yang terjadi setelahnya akan melelehkan kulit bagian luar Bumi, yang kemudian membentuk lautan magma.<ref name="Warren1985" /><ref>{{cite journal|last=Tonks|first=W. Brian|coauthors=Melosh, H. Jay|year=1993|title=Magma ocean formation due to giant impacts|journal=Journal of Geophysical Research|volume=98|issue=E3|pages=5319–5333|bibcode=1993JGR....98.5319T|doi=10.1029/92JE02726}}</ref> Bulan yang baru terbentuk juga memiliki [[lautan magma Bulan|lautan magma]] sendiri; diperkirakan kedalamannya sekitar 500 &nbsp;km dari radius keseluruhan Bulan.<ref name="Warren1985" />
 
Meskipun akurasi dalam menjelaskan pembentukan Bulan didukung oleh banyak bukti, masih terdapat beberapa kesulitan yang tidak sepenuhnya bisa dijelaskan oleh hipotesis tubrukan besar, terutama yang berkaitan dengan komposisi Bulan.<ref>{{cite journal | journal = Science | author = Daniel Clery | title = Impact Theory Gets Whacked | volume = 342 | page = 183 | date = 11 October 2013}}</ref>
Baris 149 ⟶ 148:
|}
 
Bulan tergolong benda langit [[Diferensiasi planet|diferensiasi]], yang secara [[geokimia]] memiliki komposisi [[Kerak (geologi)|kerak]], [[Mantel (geologi)|mantel]], dan [[Inti planet|inti]] yang berbeda dengan benda langit lainnya. Bulan kaya akan besi padat di bagian inti dalam, dengan radius sekitar 240 &nbsp;km, dan fluida di bagian inti luar, terutama yang terbuat dari besi cair, dengan radius sekitar 300 &nbsp;km. Di sekitar bagian inti Bulan terdapat lapisan pembatas berbentuk cair dengan radius sekitar 500 &nbsp;km.<ref>{{cite web|url=http://www.nasa.gov/topics/moonmars/features/lunar_core.html|title=NASA Research Team Reveals Moon Has Earth-Like Core|publisher=NASA|date=January 6, 2011}}</ref> Struktur ini diperkirakan terbentuk akibat [[Kristalisasi fraksional (geologi)|kristalisasi fraksional]] pada [[lautan magma Bulan|lautan magma]] sesaat setelah pembentukan Bulan 4,5 miliar tahun yang lalu.<ref>{{cite journal|doi = 10.1038/ngeo417|title =Timing of crystallization of the lunar magma ocean constrained by the oldest zircon|year = 2009|last1 = Nemchin|first1 = A.|last2 = Timms|first2 = N.|last3 = Pidgeon|first3 = R.|last4 = Geisler|first4 = T.|last5 = Reddy|first5 = S.|last6 = Meyer|first6 = C.|journal = Nature Geoscience|volume = 2|issue = 2|pages = 133–136|bibcode = 2009NatGe...2..133N }}</ref> Kristalisasi lautan magma ini akan membentuk mantel [[mafik]], yang juga disebabkan oleh curah hujan dan peluruhan mineral [[olivin]], [[klinopiroksen]], dan [[ortopiroksen]]; setelah tiga perempat lautan magma terkristalisasi, mineral [[plagioklas]] berkepadatan rendah akan terbentuk dan mengapung ke bagian atas lapisan kerak.<ref name="S06" /> Cairan terakhir yang mengalami proses kristalisasi akan terjebak di antara kerak dan mantel, dengan [[Kompabilitas (geokimia)|inkompabilitas]] dan unsur penghasil panas yang berlimpah.<ref name="W06" /> Sesuai dengan proses ini, pemetaan geokimia dari orbit menunjukkan bahwa sebagian besar kerak Bulan bersifat [[anortosit]],<ref name="L06" /> dan pengujian yang dilakukan terhadap sampel [[batuan Bulan]] yang berasal dari banjir lava di permukaan juga menjelaskan bahwa komposisi mantel mafik Bulan lebih kaya akan besi jika dibandingkan dengan Bumi.<ref name="W06" /> Teknik geofisika menjelaskan bahwa ketebalan rata-rata kerak Bulan adalah ~50&nbsp;km.<ref name="W06" />
 
Bulan adalah satelit terpadat kedua di [[Tata Surya]] setelah [[Io (bulan)|Io]].<ref name="Schubert2004" /> Akan tetapi, inti dalam Bulan tergolong kecil, dengan radius sekitar 350 &nbsp;km atau kurang;<ref name="W06" /> ukuran ini hanya ~20% dari ukuran Bulan secara keseluruhan, berbeda dengan [[Planet kebumian|benda langit kebumian]] lainnya, yang ukuran inti dalamnya hampir 50% dari ukuran keseluruhan. Komposisi Bulan belum diketahui secara pasti, namun diduga perpaduan dari besi metalik dengan sejumlah kecil [[sulfur]] dan [[nikel]]; analisis mengenai waktu rotasi variabel Bulan menunjukkan bahwa sebagian inti Bulan berbentuk cair.<ref>{{cite journal|last = Williams|first = J.G.|coauthors = Turyshev, S.G.; Boggs, D.H.; Ratcliff, J.T.|title = Lunar laser ranging science: Gravitational physics and lunar interior and geodesy|journal = Advances in Space Research|year = 2006|volume = 37|issue = 1|page = 6771|bibcode=2006AdSpR..37...67W|doi = 10.1016/j.asr.2005.05.013|arxiv = gr-qc/0412049 }}</ref>
 
===Geologi permukaan ===
Baris 179 ⟶ 178:
}}
 
[[Topografi]] Bulan telah diukur dengan menggunakan metode [[altimetri laser]] dan [[Stereoskop|analisis gambar stereo]].<ref>{{cite journal|title=Topography of the South Polar Region from Clementine Stereo Imaging|author=Spudis, Paul D.; Cook, A.; Robinson, M.; Bussey, B.; Fessler, B.| bibcode=1998nvmi.conf...69S|journal=Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets|page=69|date=January 1998|last2=Cook|last3=Robinson|last4=Bussey|last5=Fessler}}</ref> Bentuk topografi yang paling jelas terlihat adalah [[basin Kutub Selatan Aitken]] di sisi jauh, dengan diameter sekitar sekitar 2.240 &nbsp;km, yang merupakan kawah terbesar di Bulan serta kawah terbesar yang pernah ditemukan di Tata Surya.<ref name="Spudis1994" /><ref>{{cite journal|doi =10.1029/97GL01718 |first1 = C.M.|last1 = Pieters|first2 =S.|last2 =Tompkins|first3 =J.W.|last3 =Head|first4 =P.C.|last4 =Hess|title = Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle|journal = Geophysical Research Letters|volume = 24|issue = 15|pages = 1903–1906|year =1997|bibcode=1997GeoRL..24.1903P}}</ref> Titik terendah pada permukaan Bulan berada pada kedalaman 13 &nbsp;km.<ref name="Spudis1994" /><ref>{{cite web|url = http://www.psrd.hawaii.edu/July98/spa.html|title = The Biggest Hole in the Solar System|last = Taylor|first = G.J.|date = 17 July 1998|publisher = Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology|accessdate =12 April 2007}}</ref> Sedangkan titik tertinggi terdapat di bagian timurlaut, yang diduga mengalami penebalan akibat pembentukan basin Kutub Selatan Aitken.<ref>{{cite journal|last=Schultz|first=P. H.|date=March 1997|page=1259|volume=28|title=Forming the south-pole Aitken basin – The extreme games|journal=Conference Paper, 28th Annual Lunar and Planetary Science Conference|bibcode=1997LPI....28.1259S}}</ref> Basin raksasa lainnya, seperti [[Mare Imbrium|Imbrium]], [[Mare Serenitatis|Serenitatis]], [[Mare Crisium|Crisium]], [[Mare Smythii|Smythii]], dan [[Mare Orientale|Orientale]], memiliki lebar dan ketinggian yang lebih rendah.<ref name="Spudis1994" /> Ketinggian rata-rata sisi jauh Bulan kira-kira 1,9 &nbsp;km lebih tinggi jika dibandingkan dengan sisi dekat.<ref name="W06" />
 
==== Fitur vulkanis ====
Baris 194 ⟶ 193:
{{See also|Daftar kawah di Bulan}}
 
Proses geologi lainnya yang memengaruhi bentuk permukaan Bulan adalah [[kawah tubrukan]],<ref>{{cite book| last = Melosh| first = H. J.| title = Impact cratering: A geologic process| year = 1989| publisher = Oxford Univ. Press| isbn = 978-0-19-504284-9 }}</ref> yaitu ketika kawah-kawah terbentuk akibat tubrukan antara [[asteroid]] dan [[komet]] dengan pemukaan Bulan. Diperkirakan terdapat sekitar 300.000 kawah dengan luas lebih dari 1 &nbsp;km di sisi dekat Bulan.<ref>{{cite web|title=Moon Facts|url=http://planck.esa.int/science-e/www/object/index.cfm?fobjectid=31412|work=SMART-1|publisher=European Space Agency|year=2010|accessdate=12 May 2010}}</ref> Beberapa kawah ini [[Selenografi#Pemetaan dan penamaan Bulan|dinamakan]] menurut nama para pakar, ilmuwan, seniman, dan penjelajah.<ref name="gazetteer" /> [[Skala waktu geologi Bulan]] didasarkan pada peristiwa tubrukan yang paling hebat, termasuk [[Nectarian|Nectaris]], [[Lower Imbrian|Imbrium]], dan [[Mare Orientale|Orientale]], dengan struktur yang dicirikan oleh lingkaran yang terbentuk dari materi yang menguap, biasanya berdiamater ratusan hingga ribuan kilometer.<ref name="geologic" /> Kurangnya aktivitas atmosfer, cuaca, dan proses geologi terkini membuktikan bahwa kawah-kawah ini masih dalam kondisi baik. Meskipun hanya sedikit kawah yang diketahui asal usul pembentukannya, kawah-kawah ini tetap berguna untuk menentukan usia relatif Bulan. Karena kawah tubrukan menumpuk pada tingkat yang hampir konstan, menghitung jumlah kawah per satuan luas dapat digunakan untuk memperkirakan usia permukaan Bulan.<ref name="geologic" /> Usia radiometrik batuan kawah yang dibawa oleh [[misi Apollo]] berkisar dari 3,8 sampai 4,1 miliar tahun; ini digunakan untuk menjelaskan waktu terjadinya tubrukan [[Pengeboman Berat Akhir]].<ref>{{cite journal|last=Hartmann |first=William K. |last2=Quantin |first2=Cathy |last3=Mangold |first3=Nicolas |year=2007 |volume=186|issue=1 |pages=11–23 |journal=Icarus |title=Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history |doi=10.1016/j.icarus.2006.09.009 |postscript=<!--None--> |bibcode=2007Icar..186...11H}}</ref>
 
Dataran yang menyelimuti bagian atas kerak Bulan adalah permukaan yang sangat [[Kominusi|terkominusi]] (terpecah menjadi partikel yang lebih kecil) dan lapisan permukaan [[Pengebunan tubrukan|kebun kawah]] bernama [[regolith]], yang terbentuk akibat proses tubrukan. Regolith yang paling halus, yakni [[tanah Bulan]] dari kaca [[silikon dioksida]], memiliki tekstur seperti salju dan berbau seperti [[mesiu]].<ref>{{cite web|date = 30 January 2006|accessdate =15 March 2010|url = http://science.nasa.gov/headlines/y2006/30jan_smellofmoondust.htm|title = The Smell of Moondust|publisher = NASA}}</ref> Regolith di permukaan yang lebih tua umumnya lebih tebal daripada permukaan yang lebih muda; ketebalannya bervariasi, dari 10-2010–20 m di dataran tinggi dan 3-53–5 m di maria.<ref>{{cite book| last = Heiken| first = G.| coauthors = Vaniman, D.; French, B. (eds.)| title = Lunar Sourcebook, a user's guide to the Moon| year = 1991| publisher = Cambridge University Press| location = New York| isbn = 978-0-521-33444-0| page = 736 }}</ref> Di bawah lapisan regolith terdapat ''megaregolith'', lapisan batuan fraktur dengan ketebalan berkilo-kilometer. <ref>{{cite journal|last = Rasmussen|first = K.L.|coauthors = Warren, P.H.|title = Megaregolith thickness, heat flow, and the bulk composition of the Moon|journal = Nature|year = 1985|volume = 313|issue = 5998|pages = 121–124|bibcode = 1985Natur.313..121R|doi = 10.1038/313121a0}}</ref>
 
==== Ketersediaan air ====
Baris 219 ⟶ 218:
Bertahun-tahun yang lalu, jejak air telah ditemukan di permukaan Bulan.<ref name="moonwater_18032010" /> Pada tahun 1994, [[Misi Clementine#Bistatic Radar Experiment|eksperimen radar bistatik]] di wahana ''[[Clementine (pesawat luar angkasa)|Clementine]]'' menunjukkan adanya kantong air beku di sekitar permukaan Bulan. Namun, pengamatan radar setelahnya oleh [[Arecibo Observatory|Arecibo]] menunjukkan bahwa penemuan tersebut mungkin adalah batuan yang terlontar dari kawah tubrukan muda.<ref>{{cite web| last= Spudis|first = P.|title = Ice on the Moon|url = http://www.thespacereview.com/article/740/1|publisher = The Space Review|date = 6 November 2006|accessdate =12 April 2007}}</ref> Pada 1998, [[Lunar Prospector#Neutron Spectrometer (NS)|spektrometer neutron]] di wahana ''Lunar Prospector'' menemukan adanya konsentrasi [[hidrogen]] yang tinggi di lapisan regolith dengan kedalaman satu meter di wilayah kutub.<ref name="Feldman1998" /> Pada 2008, analisis yang dilakukan terhadap batuan lava vulkanis yang dibawa ke Bumi oleh Apollo 15 menunjukkan adanya kandungan air dalam jumlah kecil pada interior batuan.<ref name="Saal2008" />
 
Pada tahun 2008, wahana ''[[Chandrayaan-1]]'' mengonfirmasi keberadaan air es di permukaan Bulan dengan menggunakan [[Moon Mineralogy Mapper]]. Spektrometer mengamati adanya garis penyerapan [[hidroksil]] di bawah sinar Matahari, yang membuktikan bahwa permukaan Bulan mengandung air es dalam jumlah besar. Wahana tersebut menunjukkan bahwa konsentrasi air es mungkin mencapai 1.000&nbsp;[[ppm]].<ref name="Pieters2009" /> Pada tahun 2009, ''[[LCROSS]]'' mengirim 2.300 &nbsp;kg impaktor ke kawah kutub yang gelap permanen, dan mendeteksi sedikitnya terdapat 100 &nbsp;kg air dalam material ejektor.<ref name="Planetary" /><ref name="Colaprete" /> Analisis data LCROSS lainnya menunjukkan bahwa jumlah air yang terdeteksi mencapai 155 &nbsp;kg.<!--, or 5.6% (±2.9%) by mass.--This seems too technical for this overview--><ref name="Colaprete2010" /> Pada bulan Mei 2011, Erik Hauri melaporkan<ref name="hauri" /> adanya 615-1410 ppm [[inklusi leleh]] air pada sampel Bulan 74220, "tanah kaca jingga" dengan kandungan titanium tinggi yang berasal dari peristiwa vulkanis yang dikumpulkan dalam misi [[Apollo 17]] pada tahun 1972. Inklusi ini tebentuk saat terjadinya letusan besar di Bulan sekitar 3,7 miliar tahun yang lalu. Konsentrasi ini setara dengan magma di [[mantel atas]] Bumi.
 
=== Medan gravitasi ===
Baris 252 ⟶ 251:
 
=== Ukuran relatif ===
Ukuran Bulan relatif besar jika dibandingkan dengan ukuran Bumi, yakni seperempat dari diameter dan 1/81 dari massa Bumi.<ref name="worldbook" /> Bulan adalah [[satelit alami]] terbesar di Tata Surya menurut ukuran relatif planet yang diorbitnya, meskipun [[Charon (bulan)|Charon]] lebih besar untuk ukuran [[planet katai]] [[Pluto]], yakni sekitar 1/9 dari massa Pluto.<ref>{{cite web|url=http://www.planetary.org/explore/topics/pluto/|title=Space Topics: Pluto and Charon|publisher=The Planetary Society|accessdate=6 April 2010}}</ref> Meskipun demikian, Bumi dan Bulan masih dianggap sebagai sistem planet-satelit, bukannya sistem [[planet ganda]], karena [[barisentrum Bumi-Bulan|barisentrum]] kedua benda langit ini berlokasi 1.700 &nbsp;km (sekitar seperempat radius Bumi) di bawah permukaan Bumi.<ref>{{cite web|title=Planet Definition Questions & Answers Sheet|publisher= International Astronomical Union|year=2006|url=http://www.iau.org/public_press/news/release/iau0601/q_answers/|accessdate=24 March 2010}}</ref>
 
=== Penampakan dari Bumi ===
Baris 266 ⟶ 265:
Ketinggian Bulan di langit bervariasi; meskipun memiliki batas yang hampir sama dengan Matahari, ketinggiannya berubah seiring dengan fase Bulan dan perubahan musim dalam setahun, dengan ketinggian tertinggi terjadi saat bulan purnama pada waktu musim dingin. [[Node Bulan|Siklus simpul]] Bulan selama 18,6 tahun juga memiliki pengaruh; ketika [[simpul orbit|simpul menaik]] orbit Bulan berada pada [[ekuinoks vernal]], [[deklinasi]] Bulan bisa bergerak sejauh 28° setiap bulannya. Ini berarti Bulan bisa bergerak melintasi garis lintang hingga 28° dari khatulistiwa, bukannya 18°. Orientasi bulan sabit juga bergantung pada garis lintang; di dekat khatulistiwa, bulan sabit bisa diamati dengan teropong bintang.<ref>{{cite web|url = http://curious.astro.cornell.edu/question.php?number=393|publisher = Curious About Astronomy|title = Is the Moon seen as a crescent (and not a "boat") all over the world?|date = 18 October 2002|first = K.| last = Spekkens|accessdate =16 March 2010}}</ref>
 
Jarak antara Bulan dengan Bumi bervariasi, berkisar dari 356.400 &nbsp;km hingga 406.700 &nbsp;km pada [[apsis|perige]] (titik terdekat) dan apoge (titik terjauh). Pada tanggal 19 Maret 2011, Bulan saat fase penuh berada pada jarak terdekat dengan Bumi, terdekat sejak tahun 1993, yakni 14% lebih dekat dari posisi terjauhnya di apoge.<ref>{{cite web|url=http://www.pe.com/localnews/stories/PE_News_Local_D_moon19.23a6364.html|title=Full moon tonight is as close as it gets|date=18 March 2011|accessdate=19 March 2011|publisher=The Press Enterprise}}</ref> Fenomena ini disebut dengan "[[bulan super]]", yang berlangsung selama satu jam pada saat [[bulan purnama]], dan 30% lebih terang daripada biasanya akibat diameter sudutnya 14% lebih besar, karena <math>\scriptstyle1.14^2\approx1.30</math>.<ref>{{cite web
| title = Super Full Moon
| date = 16 March 2011
Baris 319 ⟶ 318:
}}</ref>
 
Terdapat perdebatan mengenai apakah permukaan Bulan berubah dari waktu ke waktu. Saat ini, fenomena tersebut dianggap sebagai ilusi semata, yang diakibatkan oleh pengamatan Bulan dalam kondisi pencahayaan yang berbeda, [[penglihatan astronomi]] yang buruk, atau gambar yang tidak memadai. Akan tetapi, [[pelepasan gas]] kadang-kadang juga terjadi, dan diduga merupakan peristiwa yang menyebabkan [[fenomena Bulan sementara]]. Baru-baru ini, muncul pendapat yang menyatakan bahwa sekitar 3 &nbsp;km diameter permukaan Bulan dimodifikasi oleh peristiwa pelepasan gas, yang terjadi sekitar satu juta tahun yang lalu. <ref>{{cite web|url = http://www.psrd.hawaii.edu/Nov06/MoonGas.html|last = Taylor|first = G.J.|title = Recent Gas Escape from the Moon|publisher = Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology|date = 8 November 2006|accessdate =4 April 2007}}</ref><ref>{{cite journal|last = Schultz|first = P.H.|coauthors = Staid, M.I.; Pieters, C.M.|year = 2006|title = Lunar activity from recent gas release|journal= Nature |volume = 444 |pages = 184–186|doi = 10.1038/nature05303|pmid = 17093445|issue = 7116|bibcode = 2006Natur.444..184S }}</ref> Penampakan Bulan, seperti halnya Matahari, dipengaruhi oleh [[atmosfer]] Bumi; efek umumnya adalah [[Halo (fenomena optik)|cincin halo]] 22° yang terbentuk saat cahaya Bulan dibiaskan oleh kristal es di awan [[cirrostratus]], dan terbentuknya [[Korona (meteorologi)|cincin korona]] yang lebih kecil saat Bulan ditutupi oleh awan tipis.<ref>{{cite web|url=http://ww2010.atmos.uiuc.edu/%28Gh%29/guides/mtr/opt/ice/halo/22.rxml|title=22 Degree Halo: a ring of light 22 degrees from the sun or moon |publisher=Department of Atmospheric Sciences at the University of Illinois at Urbana-Champaign.|accessdate=13 April 2010}}</ref>
 
=== Efek pasang surut===
Baris 328 ⟶ 327:
[[File:Lunar libration with phase Oct 2007 450px.gif|thumb|thumbtime=0:02|alt=Over one lunar month more than half of the Moon's surface can be seen from the surface of Earth.|[[Librasi]] Bulan dalam waktu satu bulan.]]
 
Interaksi gravitasi antara Bulan dan tonjolan di sekitar Bulan berfungsi sebagai [[torsi]] pada rotasi Bumi, yang menguras [[momentum sudut]] dan [[energi kinetik]] rotasi dari perputaran Bumi.<ref name="Lambeck1977" /><ref name="touma1994" /> Akibatnya, momentum sudut disertakan ke orbit Bulan, yang mempercepat rotasinya dan menyebabkan Bulan naik ke orbit yang lebih tinggi dan dengan periode yang lebih lama. Oleh sebab itu, jarak antara Bumi dengan Bulan juga akan meningkat, dan perputaran Bumi akan melambat.<ref name="touma1994" /> Pengukuran dengan metode [[eksperimen rentang laser Bulan|eksperimen rentang Bulan]] menggunakan reflektor laser yang dilakukan dalam misi [[Apollo]] menemukan bahwa jarak Bulan ke Bumi meningkat sekitar 38 &nbsp;mm per tahun<ref>{{cite journal|last=Chapront|first=J.|coauthors=Chapront-Touzé, M.; Francou, G.|year=2002|title=A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements|journal=Astronomy and Astrophysics|volume=387|issue=2|pages=700–709|doi=10.1051/0004-6361:20020420|bibcode = 2002A&A...387..700C}}</ref> (meskipun angka ini hanya 0,10 [[ppb]]/tahun dari radius orbit Bulan). [[Jam atom]] juga menunjukkan bahwa lama hari di Bumi meningkat sekitar 15 [[mikrodetik]] per tahun,<ref>{{cite web|last = Ray|first = R.|date = 15 May 2001|url = http://bowie.gsfc.nasa.gov/ggfc/tides/intro.html|title = Ocean Tides and the Earth's Rotation|publisher = IERS Special Bureau for Tides|accessdate =17 March 2010}}</ref> yang secara perlahan-lahan memperpanjang waktu [[Coordinated Universal Time|UTC]] yang disesuaikan oleh [[detik kabisat]]. Tarikan pasang surut Bulan akan terus berlanjut sampai perputaran Bumi dan periode orbit Bulan sesuai. Namun, Matahari akan berubah menjadi [[raksasa merah]] dan memusnahkan Bumi jauh sebelum hal tersebut terjadi.<ref>{{cite book| author = Murray, C.D. and Dermott, S.F.| coauthors = Stanley F. Dermott| title = Solar System Dynamics| year = 1999| publisher = Cambridge University Press| isbn = 978-0-521-57295-8| page = 184 }}</ref><ref>{{cite book| last = Dickinson| first = Terence| authorlink = Terence Dickinson| title = From the Big Bang to Planet X| year = 1993| publisher = [[Camden House]]| location = Camden East, Ontario| isbn = 978-0-921820-71-0| pages = 79–81 }}
</ref>
 
Baris 357 ⟶ 356:
{{See also|Penjelajahan Bulan|Kolonisasi Bulan|Daftar benda buatan manusia di Bulan}}
 
[[File:Moon by Johannes hevelius 1645.PNG|thumb|alt=On an open folio page is a carefully drawn disk of the full moon. In the upper corners of the page are waving banners held aloft by pairs of winged cherubs. In the lower left page corner a cherub assists another to measure distances with a pair of compasses; in the lower right corner a cherub views the main map through a handheld telescope, whereas another, kneeling, peers at the map from over a low cloth-draped table.|Peta Bulan karya [[Johannes Hevelius]] dari ''[[Selenographia]]'' (1647), peta pertama yang menyertakan zona [[librasi]] Bulan.]]
 
=== Penelitian awal ===
Baris 374 ⟶ 373:
{{main|Program Luna|Program Lunokhod}}
 
[[Perang Dingin]] mendorong terjadinya [[Perlombaan Angkasa]] antara [[Uni Soviet]] dan [[Amerika Serikat]], yang menyebabkan adanya akselerasi kepentingan dalam [[penjelajahan Bulan]]. Setelah peluncur memiliki kemampuan yang diperlukan, kedua negara ini mengirim wahana tak berawak melalui misi orbit ataupun misi pendaratan di Bulan. Wahana buatan Soviet, [[Program Luna|''Luna'']], adalah wahana pertama yang berhasil mencapai tujuan. Setelah meluncurkan tiga misi nirawak dan mengalami kegagalan pada tahun 1958,<ref name="Zak 2009">{{cite web|url= http://www.russianspaceweb.com/spacecraft_planetary_lunar.html| first = Anatoly|last = Zak |year = 2009|title = Russia's unmanned missions toward the Moon|accessdate=20 April 2010}}</ref> benda buatan manusia pertama yang keluar dari gravitasi Bumi dan melintas di dekat Bulan adalah ''[[Luna 1]]''; benda buatan manusia pertama yang menabrak permukaan Bulan adalah ''[[Luna 2]]'', dan foto pertama [[sisi jauh Bulan]] dipotret oleh ''[[Luna 3]]'', semuanya dilakukan pada tahun 1959.<ref>{{cite web|urlname= http://www.russianspaceweb.com/spacecraft_planetary_lunar.html| first = Anatoly|last = "Zak |year = 2009|title = Russia's unmanned missions toward the Moon|accessdate=20 April 2010}}<"/ref>
 
Wahana antariksa pertama yang berhasil melakukan [[Lander (pesawat luar angkasa)|pendaratan lunak]] di permukaan Bulan adalah ''[[Luna 9]]'', dan wahana nirawak pertama yang mengorbit Bulan adalah ''[[Luna 10]]'', keduanya terjadi pada tahun 1966.<ref name="worldbook" /> [[Batuan Bulan|Sampel tanah dan batuan Bulan]] dibawa ke Bumi oleh tiga [[misi pengembalian sampel]] ''Luna'', yakni ''[[Luna 16]]'' pada 1970, ''[[Luna 20]]'' pada 1972, dan ''[[Luna 24]]'' pada 1976, yang berhasil membawa 0,3 &nbsp;kg batuan dan tanah Bulan.<ref>{{cite web|url=http://curator.jsc.nasa.gov/lunar/index.cfm|title=Rocks and Soils from the Moon|publisher=NASA|accessdate=6 April 2010}}</ref> Dua [[rover (penjelajahan luar angkasa)|rover]] robotika perintis mendarat di Bulan pada tahun 1970 dan 1973 sebagai bagian dari [[program Lunokhod]] Soviet.
[[Perang Dingin]] mendorong terjadinya [[Perlombaan Angkasa]] antara [[Uni Soviet]] dan [[Amerika Serikat]], yang menyebabkan adanya akselerasi kepentingan dalam [[penjelajahan Bulan]]. Setelah peluncur memiliki kemampuan yang diperlukan, kedua negara ini mengirim wahana tak berawak melalui misi orbit ataupun misi pendaratan di Bulan. Wahana buatan Soviet, [[Program Luna|''Luna'']], adalah wahana pertama yang berhasil mencapai tujuan. Setelah meluncurkan tiga misi nirawak dan mengalami kegagalan pada tahun 1958,<ref>{{cite web|url= http://www.russianspaceweb.com/spacecraft_planetary_lunar.html| first = Anatoly|last = Zak |year = 2009|title = Russia's unmanned missions toward the Moon|accessdate=20 April 2010}}</ref> benda buatan manusia pertama yang keluar dari gravitasi Bumi dan melintas di dekat Bulan adalah ''[[Luna 1]]''; benda buatan manusia pertama yang menabrak permukaan Bulan adalah ''[[Luna 2]]'', dan foto pertama [[sisi jauh Bulan]] dipotret oleh ''[[Luna 3]]'', semuanya dilakukan pada tahun 1959.<ref>{{cite web|url= http://www.russianspaceweb.com/spacecraft_planetary_lunar.html| first = Anatoly|last = Zak |year = 2009|title = Russia's unmanned missions toward the Moon|accessdate=20 April 2010}}</ref>
 
Wahana antariksa pertama yang berhasil melakukan [[Lander (pesawat luar angkasa)|pendaratan lunak]] di permukaan Bulan adalah ''[[Luna 9]]'', dan wahana nirawak pertama yang mengorbit Bulan adalah ''[[Luna 10]]'', keduanya terjadi pada tahun 1966.<ref name="worldbook" /> [[Batuan Bulan|Sampel tanah dan batuan Bulan]] dibawa ke Bumi oleh tiga [[misi pengembalian sampel]] ''Luna'', yakni ''[[Luna 16]]'' pada 1970, ''[[Luna 20]]'' pada 1972, dan ''[[Luna 24]]'' pada 1976, yang berhasil membawa 0,3 kg batuan dan tanah Bulan.<ref>{{cite web|url=http://curator.jsc.nasa.gov/lunar/index.cfm|title=Rocks and Soils from the Moon|publisher=NASA|accessdate=6 April 2010}}</ref> Dua [[rover (penjelajahan luar angkasa)|rover]] robotika perintis mendarat di Bulan pada tahun 1970 dan 1973 sebagai bagian dari [[program Lunokhod]] Soviet.
 
==== Misi Amerika Serikat ====
Baris 384 ⟶ 382:
[[File:As11-40-5886, uncropped.jpg|thumb|[[Neil Armstrong]] dan bendera Amerika Serikat di Bulan.]]
 
[[Amerika Serikat]] meluncurkan wahana tak berawak untuk mengembangkan pemahaman mengenai permukaan Bulan demi kepentingan pendaratan berawak di kemudian hari; [[Program Surveyor|program ''Surveyor'']] [[Jet Propulsion Laboratory]] mendaratkan [[Surveyor 1|wahana pertamanya]] empat bulan setelah peluncuran ''Luna 9''. [[Program Apollo]] berawak [[NASA]] dikembangkan secara paralel; setelah serangkaian pengujian tak berawak dan berawak pada wahana Apollo di orbit Bumi, dan didorong oleh rencana peluncuran [[Program Bulan berawak Soviet|penerbangan Bulan Soviet]], [[Apollo 8]] mengirimkan misi berawak pertama ke orbit Bulan pada tahun 1968. Misi berikutnya berhasil mendaratkan manusia untuk pertama kalinya di permukaan Bulan, yang dipandang oleh banyak pihak sebagai puncak [[Perlombaan Angkasa]].<ref name="CNN" /> [[Neil Armstrong]] menjadi manusia pertama yang berjalan di permukaan Bulan sebagai pemimpin misi [[Apollo 11]] Amerika Serikat; ia menjejakkan langkah pertamanya di permukaan Bulan pada pukul 02:56&nbsp;UTC tanggal 21 Juli 1969.<ref>{{cite web|url=http://history.nasa.gov/ap11ann/ap11events.html|title=Record of Lunar Events, 24 July 1969|work=Apollo 11 30th anniversary|publisher=NASA.|accessdate=13 April 2010}}</ref> Misi Apollo 11 hingga 17 (kecuali [[Apollo 13]], yang pendaratannya dibatalkan) berhasil kembali ke Bumi dengan membawa 382 &nbsp;kg tanah dan batuan Bulan dalam 2.196 sampel terpisah.<ref>{{cite web|url=http://www.psrd.hawaii.edu/Dec09/PSRD-Apollo-lunar-samples.pdf|title=Celebrated Moon Rocks --- Overview and status of the Apollo lunar collection: A unique, but limited, resource of extraterrestrial material.|last=Martel|first=Linda M. V.|date=21 December 2009|publisher=Planetary Science and Research Discoveries|accessdate=6 April 2010}}</ref> [[Pendaratan di Bulan|Pendaratan Bulan]] Amerika Serikat dipicu oleh kemajuan teknologi yang cukup pesat pada akhir 1960-an, misalnya kimia [[ablasi]], [[rekayasa perangkat lunak]], dan teknologi [[Proses penetrasi atmosfer|penetrasi atmosfer]], serta manajemen yang sangat kompeten sehubungan dengan upaya teknis yang besar.<ref>{{cite web|url=http://history.nasa.gov/ap11ann/legacy.htm|title=The Legacy of Project Apollo|last=Launius|first=Roger D.|date=July 1999|publisher=NASA History Office|accessdate=13 April 2010}}</ref><ref>{{cite book|title=SP-287 What Made Apollo a Success? A series of eight articles reprinted by permission from the March 1970 issue of Astronautics & Aeronautics, a publication of the American Institute of Aeronautics and Astronautics.|publisher=Scientific and Technical Information Office, National Aeronautics and Space Administration|location=Washington, D.C.|year=1971}}</ref>
 
Sejumlah instrumen ilmiah dipasang di permukaan Bulan selama misi pendaratan Apollo. [[Apollo Lunar Surface Experiments Package|Stasiun instrumen]] berumur panjang, termasuk kapsul beraliran panas, [[seismometer]], dan [[magnetometer]], dipasang di lokasi pendaratan [[Apollo 12]], [[Apollo 14|14]], [[Apollo 15|15]], [[Apollo 16|16]], dan [[Apollo 17|17]]. Transmisi data langsung ke Bumi diakhiri pada tahun 1977 karena pertimbangan anggaran,<ref>{{cite press release|title = NASA news release 77-47 page 242| date = 1 September 1977| url = http://www.nasa.gov/centers/johnson/pdf/83129main_1977.pdf|accessdate =16 March 2010|format=PDF}}</ref><ref>{{cite news|url = http://www.ast.cam.ac.uk/~ipswich/Miscellaneous/Archived_spaceflight_news.htm|accessdate =29 August 2007| location = NASA Turns A Deaf Ear To The Moon|year = 1977|title = OASI Newsletters Archive|last = Appleton|first = James|coauthors = Radley, Charles; Deans, John; Harvey, Simon; Burt, Paul; Haxell, Michael; Adams, Roy; Spooner N.; Brieske, Wayne|archiveurl = http://web.archive.org/web/20071210143103/http://www.ast.cam.ac.uk/~ipswich/Miscellaneous/Archived_spaceflight_news.htm |archivedate = 10 December 2007|deadurl=yes}}</ref> tetapi setelah stasiun [[rentang laser Bulan]] menjadi instrumen pasif, transmisi data masih terus dilakukan. Komunikasi jarak di stasiun secara rutin diterima oleh stasiun Bumi dengan akurasi beberapa sentimeter, dan data dari eksperimen ini digunakan untuk menentukan ukuran inti Bulan.<ref>{{cite journal|last = Dickey|first = J.|year = 1994|title = Lunar laser ranging: a continuing legacy of the Apollo program|journal = Science|volume = 265 |pages = 482–490|doi = 10.1126/science.265.5171.482|pmid = 17781305|issue = 5171|bibcode=1994Sci...265..482D|display-authors = 1|last2 = Bender|first2 = P. L.|last3 = Faller|first3 = J. E.|last4 = Newhall|first4 = X X|last5 = Ricklefs|first5 = R. L.|last6 = Ries|first6 = J. G.|last7 = Shelus|first7 = P. J.|last8 = Veillet|first8 = C.|last9 = Whipple|first9 = A. L.}}</ref>
Baris 508 ⟶ 506:
{{efn
| name = maxval
|''Nilai maksimum'' didasarkan pada skala kecerahan dari nilai -12,74 yang diberikan untuk jarak khatulistiwa ke pusat Bulan, atau 378.000 menurut NASA, hingga jarak minimum Bumi-Bulan yang dicantumkan disini, setelah disesuaikan dengan radius khatulistiwa Bumi, yakni 6.378, sehingga jaraknya adalah 350.600 km. Nilai minimum (saat [[bulan baru]]) didasarkan pada skala yang sama dengan menggunakan jarak Bumi-Bulan maksimum, atau 407.000 km, dan dengan menghitung kecerahan cahaya bulan pada saat bulan baru. Kecerahan cahaya bulan adalah {{nowrap|[[Albedo]] Bumi ×}} {{nowrap|([[radius bumi]] /}} Radius [[orbit Bulan]])<sup>2</sup>&nbsp;] relatif terhadap pencahayaan langsung dari Matahari yang terjadi saat bulan purnama. ({{nowrap|Albedo Bumi {{=}} 0.367}}; {{nowrap|Radius Bumi {{=}} radius (kutub}}&nbsp;× {{nowrap|radius khatulistiwa)<sup>½</sup> {{=}} 6 367 km}}.)
}}
 
Baris 563 ⟶ 561:
}}
 
'''RujukanReferensi'''
 
{{reflist
Baris 1.348 ⟶ 1.346:
 
[[Kategori:Bulan| ]]
[[Kategori:Satelit alami ]]
[[Kategori:Tata Surya]]
 
Baris 1.355 ⟶ 1.353:
{{Link FA|bg}}
{{Link FA|da}}
{{Link FA|de}}
{{Link FA|en}}
{{Link FA|hu}}
{{Link FA|ml}}