Deret (matematika): Perbedaan antara revisi

Konten dihapus Konten ditambahkan
←Membuat halaman berisi '<!--{{about|infinite sums|finite sums|Summation}}--> {{Kalkulus}} '''Deret''' ({{lang-en|series}}) adalah jumlah dari istilah-istilah (''term''; jamak: ''terms'') dal...'
 
Tidak ada ringkasan suntingan
Baris 9:
 
Istilah-istilah dalam suatu deret sering diproduksi menurut kaidah tertentu, misalnya dengan suatu [[rumus]], atau melalui suatu [[algoritme]]. Mengingat tidak terbatasnya jumlah istilah, hasilnya sering disebut '''deret tak terhingga''' (''infinite series''). Berbeda dengan finite summations, deret tak terhingga membutuhkan bantuan dari [[analisis matematika]], dan secara khusus [[limit (matematika)|limit]], untuk dapat dipahami dan dimanipulasi secara penuh. Selain jumlahnya yang banyak dalam matematika, deret tak terhingga juga sering digunakan dalam bidang-bidang kuantitatif lain seperti [[fisika]], sains komputer, dan finansial.
<!--
==Basic properties==
 
===Definition= Sifat dasar ==
 
For any [[sequence]] <math>\{a_n\}</math> of [[rational numbers]], [[real numbers]], [[complex numbers]], [[Function (mathematics)|functions]] thereof, etc., the associated '''series''' is defined as the ordered [[formal sum]]
===Definisi===
Untuk setiap [[urutan]] <math>\{a_n\}</math> [[bilangan rasional]], [[bilangan real]], [[bilangan kompleks]], [[Fungsi (matematika)|fungsi]], dan lain-lain, '''deret''' yang bersangkutan didefinisikan sebagai [[formal sum]] tertata
:<math>\sum_{n=0}^{\infty}a_n = a_0 + a_1 + a_2 + \cdots </math>.
The '''sequence ofUrutan partialjumlah sumsparsial''' <math>\{S_k\}</math> associatedbersangkutan todengan asuatu seriesderet <math>\sum_{n=0}^\infty a_n</math> isdidefinisikan definedbagi for eachsetiap <math>k</math> as the sum ofsebagai thejumlah sequenceurutan <math>\{a_n\}</math> fromdari <math>a_0</math> tosampai <math>a_k</math>
:<math>S_k = \sum_{n=0}^{k}a_n = a_0 + a_1 + \cdots + a_k.</math>
ByBerdasarkan definitiondefinisi, the seriesderet <math>\sum_{n=0}^{\infty} a_n</math> '''converges''' tomenjadi asuatu limit <math>L</math> ifjika anddan onlyhanya ifjika theurutan associatedyang sequencebersangkutan ofdengan partialjumlah sumsparsial <math>\{S_k\}</math> [[Limit of a sequence#Formal Definition|converges]] tomenjadi <math>L</math>. This definitionDefinisi isini usuallybiasanya writtenditulis assebagai
:<math>L = \sum_{n=0}^{\infty}a_n \Leftrightarrow L = \lim_{k \rightarrow \infty} S_k.</math>
<!--
 
More generally, if <math>I \xrightarrow{a} G</math> is a [[Function (mathematics)|function]] from an [[index set]] I to a set G, then the '''series''' associated to <math>a</math> is the [[formal sum]] of the elements <math>a(x) \in G </math> over the index elements <math>x \in I</math> denoted by the
:<math>\sum_{x \in I} a(x).</math>
Baris 146:
*[[Ratio test]]: If there exists a constant ''C''&nbsp;< 1 such that |''a''<sub>''n''+1</sub>/''a''<sub>''n''</sub>|<''C'' for all sufficiently large&nbsp;''n'', then ∑''a''<sub>''n''</sub> converges absolutely. When the ratio is less than 1, but not less than a constant less than 1, convergence is possible but this test does not establish it.
*[[Root test]]: If there exists a constant ''C''&nbsp;< 1 such that |''a''<sub>''n''</sub>|<sup>1/''n''</sup>&nbsp;≤ ''C'' for all sufficiently large&nbsp;''n'', then ∑''a''<sub>''n''</sub> converges absolutely.
*[[Integral test for convergence|Integral test]]: if ''ƒ''(''x'') is a positive [[monotone decreasing]] function defined on the [[interval (mathematics)|interval]] <nowiki>[</nowiki>1, ∞<nowiki>)</nowiki>--><!--DO NOT "FIX" THE "TYPO" IN THE FOREGOING. IT IS INTENDED TO SAY [...) WITH A SQUARE BRACKET ON THE LEFT AND A ROUND BRACKET ON THE RIGHT. --><!-- with ''ƒ''(''n'')&nbsp;= ''a''<sub>''n''</sub> for all&nbsp;''n'', then ∑''a''<sub>''n''</sub> converges if and only if the [[integral]]&thinsp; ∫<sub>1</sub><sup>∞</sup>&nbsp;''ƒ''(''x'')&nbsp;d''x'' is finite.
*[[Cauchy's condensation test]]: If ''a''<sub>''n''</sub> is non-negative and non-increasing, then the two series&thinsp; ∑''a''<sub>''n''</sub>&thinsp; and&thinsp; ∑2<sup>''k''</sup>''a''<sub>(2<sup>''k''</sup>)</sub> are of the same nature: both convergent, or both divergent.
*[[Alternating series test]]: A series of the form ∑(&minus;1)<sup>''n''</sup>&nbsp;''a''<sub>''n''</sub> (with ''a''<sub>''n''</sub>&nbsp;≥ 0) is called ''alternating''. Such a series converges if the [[sequence]] ''a''<sub>''n''</sub> is [[monotone decreasing]] and converges to&nbsp;0. The converse is in general not true.
*For some specific types of series there are more specialized convergence tests, for instance for [[Fourier series]] there is the [[Dini test]].
-->
 
==Series ofDeret functionsfungsi==
{{Main|FunctionDeret seriesfungsi}}
Suatu deret fungsi-fungsi bernilai real atau kompleks
A series of real- or complex-valued functions
 
:<math>\sum_{n=0}^\infty f_n(x)</math>
 
'''[[Pointwise convergence|converges pointwise]]''' onpada asuatu sethimpunan ''E'', ifjika thederet seriesitu ''converges'' foruntuk eachsetiap ''x'' indalam ''E'' assebagai ansuatu ordinaryderet seriesordinari ofbilangan real oratau complexbilangan numberskompleks. Ekuivalen Equivalently,dengan theitu, partialjumlah sumsparsial
:<math>s_N(x) = \sum_{n=0}^N f_n(x)</math>
converge tomenjadi ''ƒ''(''x'') assebagai ''N''&nbsp;→&nbsp;∞ foruntuk eachsetiap ''x''&nbsp;∈&nbsp;''E''.
<!--
 
A stronger notion of convergence of a series of functions is called '''[[uniform convergence]]'''. The series converges uniformly if it converges pointwise to the function ''ƒ''(''x''), and the error in approximating the limit by the ''N''th partial sum,
:<math>|s_N(x) - f(x)|\ </math>
can be made minimal ''independently'' of ''x'' by choosing a sufficiently large ''N''.
 
Uniform convergence is desirable for a series because many properties of the terms of the series are then retained by the limit. For example, if a series of continuous functions converges uniformly, then the limit function is also continuous. Similarly, if the ''ƒ''<sub>''n''</sub> are [[integral|integrable]] on a closed and bounded interval ''I'' and converge uniformly, then the series is also integrable on ''I'' and can be integrated term-by-term. Tests for uniform convergence include the [[Weierstrass M-test|Weierstrass' M-test]], [[Abel's uniform convergence test]], [[Dini's test]]--><!-- , and the [[Cauchy criterion]]: this is not about convergence of functions, even less about uniform convergence. -->.
<!--
 
More sophisticated types of convergence of a series of functions can also be defined. In [[measure theory]], for instance, a series of functions converges [[almost everywhere]] if it converges pointwise except on a certain set of [[null set|measure zero]]. Other [[modes of convergence]] depend on a different [[metric space]] structure on the space of functions under consideration. For instance, a series of functions '''converges in mean''' on a set ''E'' to a limit function ''ƒ'' provided
:<math>\int_E \left|s_N(x)-f(x)\right|^2\,dx \to 0</math>
Baris 187:
However, the formal operation with non-convergent series has been retained in rings of [[formal power series]] which are studied in [[abstract algebra]]. Formal power series are also used in [[combinatorics]] to describe and study [[sequence]]s that are otherwise difficult to handle; this is the method of [[generating function]]s.
 
=== Deret Laurent series===
{{Main|LaurentDeret seriesLaurent}}
Laurent series generalize power series by admitting terms into the series with negative as well as positive exponents. A Laurent series is thus any series of the form
:<math>\sum_{n=-\infty}^\infty a_n x^n.</math>
If such a series converges, then in general it does so in an [[annulus (mathematics)|annulus]] rather than a disc, and possibly some boundary points. The series converges uniformly on compact subsets of the interior of the annulus of convergence.
 
===Deret Dirichlet series===
:{{Main|DirichletDeret seriesDirichlet}}
 
A [[Deret Dirichlet series]] is one of themempunyai formbentuk
 
:<math>\sum_{n=1}^\infty {a_n \over n^s},</math>
 
wheredi mana ''s'' isadalah asuatu [[complexbilangan numberkompleks]]. For example, if all ''a''<sub>''n''</sub> are equal to 1, then the Dirichlet series is the [[Riemann zeta function]]
 
:<math>\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}.</math>
Baris 208:
This series can be directly generalized to [[general Dirichlet series]].
 
=== Deret trigonometri ===
===Trigonometric series===
{{Main|TrigonometricDeret seriestrigonometri}}
A series of functions in which the terms are [[trigonometric function]]s is called adisebut '''trigonometricDeret seriestrigonometri''':
:<math>\tfrac12 A_0 + \sum_{n=1}^\infty \left(A_n\cos nx + B_n \sin nx\right).</math>
The most important example of a trigonometric series is the [[Fourier series]] of a function.