Sejarah matematika: Perbedaan revisi

77 bita dihapus ,  10 tahun yang lalu
Matematika India, belum beres
(Matematika Cina)
(Matematika India, belum beres)
 
== Matematika India ==
{{utama|Matematika India}}
<!--
[[Berkas:2064 aryabhata-crp.jpg|thumb|Arca [[Aryabhata]]. Karena informasi tentang keujudannya tidak diketahui, perupaan Aryabhata didasarkan pada daya khayal seniman.]]
{{Main|Indian mathematics}}
{{See also|History of the Hindu-Arabic numeral system}}
[[Image:2064 aryabhata-crp.jpg|thumb|Statue of [[Aryabhata]]. As there is no known information regarding his appearance, any image of Aryabhata originates from an artist's conception.]]
 
ThePeradaban earliestterdini civilizationanak onbenua theIndia Indian subcontinent is theadalah [[IndusPeradaban ValleyLembah CivilizationIndus]] thatyang flourishedmengemuka betweendi antara tahun 2600 anddan 1900 BCSM indi thedaerah aliran [[IndusSungai riverIndus]] basin. Kota-kota Theirmereka citiesteratur weresecara laidgeometris, outtetapi with geometric regularity,dokumen butmatematika noyang knownmasih mathematicalterawat documentsdari surviveperadaban fromini thisbelum civilizationditemukan.<ref>{{Harv|Boyer|1991|loc="China and India" p. 206}}</ref>
 
VedicMatematika mathematicsVedanta begandimulakan indi India insejak theZaman early Iron AgeBesi. The ''[[Shatapatha Brahmana]]'' (c.kira-kira 9thabad centuryke-9 BCSM), which approximates the valuemenghampiri ofnilai [[π]],<ref>[http://www-history.mcs.st-andrews.ac.uk/history/Projects/Pearce/Chapters/Ch4_1.html]. TheNilai valuesyang givendiberikan areadalah 25/8 (3.,125),; 900/289 (3.,11418685...),; 1156/361 (3.,202216...), anddan 339/108 (3.,1389), theyang lastditulis ofterakhir whichadalah is correctbenar (whenketika roundeddibulatkan) tosampai twodua decimaltempat placesdesimal</ref> and thedan [[Sulba Sutras]] (c.kira-kira 800–500 BCSM) wereyang merupakan tulisan-tulisan [[geometrygeometri]] texts thatyang usedmenggunakan [[irrationalbilangan numberirasional]]s, [[primebilangan numberprima]]s, the [[ruleaturan of threetiga (mathematicsmatematika)|ruleaturan of threetiga]] anddan [[cubeakar rootkubik]]s; computed themenghitung [[squareakar rootkuadrat]] ofdari 2 tosampai onesebagian partdari inseratus one hundred thousandribuan; gavememberikan themetode method for constructing akonstruksi [[squaringpenguadratan the circlelingkaran|circle with approximately thelingkaran sameyang arealuasnya asmenghampiri apersegi givenyang squarediberikan]],<ref>[http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Indian_sulbasutras.html TheSulbasutra Indian SulbasutrasIndia]. TheMetode methodkonstruksi constructspersegi a square of sidebersisi 13/15 times thekali diameter oflingkaran theyang given circlediberikan (corresponds tobersesuaian takingdengan π=3.00444), sojadi itini isbukan nothampiran ayang verysangat good approximationbaik.</ref> solvedmenyelesaikan [[linearpersamaan equation|linear]] anddan [[quadraticpersamaan equationkuadrat|kuadrat]]s; developedmengembangkan [[Pythagoreantripel triplePythagoras]]s algebraicallysecara aljabar, anddan gavememberikan apernyataan statementdan and numerical [[mathematical proof|proof]]bukti ofnumerik theuntuk [[Pythagoreanteorema theoremPythagoras]].
 
<!--
{{Unicode|[[Pāṇini]]}} (c. 5th century BC) formulated the rules for [[Sanskrit grammar]].<ref>{{Citation
| last=Bronkhorst
Pengguna anonim