Transistor sambungan dwikutub: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Relly Komaruzaman (bicara | kontrib)
Tidak ada ringkasan suntingan
Borgxbot (bicara | kontrib)
k Robot: Cosmetic changes
Baris 1:
{{Infobox komponen elektronik
|nama_komponen=Transistor pertemuan dwikutub
|foto=[[imageBerkas:Transistor-photo.JPG|thumb]]
|judul_foto=
|tipe=[[Komponen aktif]]
Baris 9:
|penemu=[[John Bardeen]], [[Walter Houser Brattain]] dan [[William Shockley]] ([[Desember]] [[1947]])
|pembuatan_pertama=Laboratorium Telepon Bell
|simbol=[[ImageBerkas:Icon of Bipolar transistor.png|thumb]]
|susunan_kaki= 3 kaki (basis, kolektor, emitor)
}}
Baris 16:
 
==Perkenalan==
[[ImageBerkas:NPN BJT Basic Operation (Active).svg|thumb|500px|NPN BJT dengan pertemuan E–B dipanjar maju dan pertemuan B–C dipanjar mundur]]
Transistor NPN dapat dianggap sebagai dua dioda adu punggung tunggal anoda. Pada penggunaan biasa, pertemuan p-n emitor-basis dipanjar maju dan pertemuan basis-kolektor dipanjar mundur. Dalam transistor NPN, sebagai contoh, jika tegangan positif dikenakan pada pertemuan basis-emitor, keseimbangan diantara pembawa terbangkitkan kalor dan medan listrik menolak pada daerah pemiskinan menjadi tidak seimbang, memungkinkan elektron terusik kalor untuk masuk ke daerah basis. Elektron tersebut mengembara (atau menyebar) melalui basis dari daerah konsentrasi tinggi dekat emitor menuju konsentrasi rendah dekat kolektor. Elektron pada basis dinamakan pembawa minoritas karena basis dikotori menjadi tipe-p yang menjadikan lubang sebagai pembawa mayoritas pada basis.
Daerah basis pada transistor harus dibuat tipis, sehingga pembawa tersebut dapat menyebar melewatinya dengan lebih cepat daripada umur pembawa minoritas semikonduktor untuk mengurangi bagian pembawa yang bergabung kembali sebelum mencapai pertemuan kolektor-basis. Untuk memastikannya, ketebalan basis dibuat jauh lebih rendah dari panjang penyebaran dari elektron. Pertemuan kolektor-basis dipanjar terbalik, jadi sedikit sekali injeksi elektron yang terjadi dari kolektor ke basis, tetapi elektron yang menyebar melalui basis menuju kolektor disapu menuju kolektor oleh medan pada pertemuan kolektor-basis.
===Pengendalian tegangan, arus dan muatan===
Arus kolektor-emitor dapat dipandang sebagai terkendali arus basis-emitor (kendali arus) atau tegangan basis-emitor (kendali tegangan). Pandangan tersebut berhubungan dengan hubungan arus-tegangan dari pertemuan basis-emitor, yang mana hanya merupakan kurva arus-tegangan eksponensial biasa dari dioda pertemuan p-n.<ref name="hh">{{cite book|author=[[Paul Horowitz]] and [[Winfield Hill]]|title=[[The Art of Electronics]]|edition=2<sup>nd</sup>|year=1989|publisher=Cambridge University Press|isbn=9780521370950|url=http://books.google.com/books?id=bkOMDgwFA28C&pg=PA113&dq=bjt+charge+current+voltage+control+inauthor:horowitz+inauthor:hill&as_brr=0&ei=A33kRuT6Co3goAKF5pSqCw&sig=EmoHsk3zMEtvV1VYKR65A4I1SCM}}</ref>
Penjelasan fisika untuk arus kolektor adalah jumlah muatan pembawa minoritas pada daerah basis.<ref name=hh/><ref>{{cite book|title=Semiconductor Device Physics and Simulation|author=Juin Jei Liou and Jiann S. Yuan|publisher=Springer|year=1998|isbn=0306457245|url=http://books.google.com/books?id=y343FTN1TU0C&pg=PA166&dq=charge-controlled+bjt+physics&as_brr=0&ei=l9viRqilEIjopQL_i6WFDg&sig=vXciSaFRmNUmg3KIhmBX7DCiVOA}}</ref><ref>{{cite book|title=Transistor Manual|author=General Electric|edition=6<sup>th</sup>|year=1962|page=12}} "If the principle of space charge neutrality is used in the analysis of the transistor, it is evident that the collector current is controlled by means of the positive charge (hole concentration) in the base region. ... When a transistor is used at higher frequencies, the fundamental limitation is the time it takes the carriers to diffuse across the base region..." (same in 4<sup>th</sup> and 5<sup>th</sup> editions)</ref> Model mendetail dari kerja transistor, [[model Gummel–Poon]], menghitung distribusi dari muatan tersebut secara eksplisit untuk menjelaskan perilaku transistor dengan lebih tepat.<ref>{{cite book|title=Semiconductor Device Modeling with Spice|author=Paolo Antognetti and Giuseppe Massobrio|publisher=McGraw&ndash;HillMcGraw–Hill Professional|year=1993|isbn=0071349553|url=http://books.google.com/books?id=5IBYU9xrGaIC&pg=PA96&dq=gummel-poon+charge+model&as_brr=3&ei=v4TkRp-4Gp2cowLM7bnCCw&sig=vYrycIhlQKCq7VmoK231pjYXPyU#PPA98,M1}}</ref> Pandangan mengenai kendali-muatan dengan mudah menangani transistor-foto, dimana pembawa minoritas di daerah basis dibangkitkan oleh penyerapan foton, dan menangani pematian dinamik atau waktu pulih, yang mana bergantung pada penggabungan kembali muatan di daerah basis. Walaupun begitu, karena muatan basis bukanlah isyarat yang dapat diukur pada saluran, pandangan kendali arus dan tegangan biasanya digunakan pada desain dan analisis sirkuit.
Pada desain sirkuit analog, pandangan kendali arus sering digunakan karena ini hampir linier. Arus kolektor kira-kira <math>\beta_F</math> kali lipat dari arus basis. Beberapa sirkuit dasar dapat didesain dengan mengasumsikan bahwa tegangan emitor-basis kira-kira tetap, dan arus kolektor adalah beta kali lipat dari arus basis. Walaupun begitu, untuk mendesain sirkuit BJT dengan akurat dan dapat diandalkan, diperlukan model kendali-tegangan (sebagai contoh [[model Ebers–Moll]])<ref name=hh/>. Model kendali-tegangan membutuhkan fungsi eksponensial yang harus diperhitungkan, tetapi jika ini dilinierkan, transistor dapat dimodelkan sebagai sebuah transkonduktansi, seperti pada [[model Ebers–Moll]], desain untuk sirkuit seperti penguat diferensial menjadi masalah linier, jadi pandangan kontrol-tegangan sering diutamakan. Untuk sirkuit translinier, dimana kurva eksponensiak I-V adalah kunci dari operasi, transistor biasanya dimodelkan sebagai terkendali tegangan dengan transkonduktansi sebanding dengan arus kolektor.
===Tundaan penghidupan, pematian dan penyimpanan===
Baris 33:
 
==Struktur==
[[ImageBerkas:npn BJT cross section.PNG|thumb|left|250px|Irisan transistor NPN yang disederhanakan]]
[[ImageBerkas:Transistor-die-KSY34.jpg|thumb|right|200px|Kepingan transistor NPN frekuensi tinggi KSY34, basis dan emitor disambungkan melalui ikatan kawat]]
BJT terdiri dari tiga daerah semikonduktor yang berbeda pengotorannya, yaitu daerah ''emitor'', daerah ''basis'' dan daerah ''kolektor''. Daerah-daerah tersebut adalah tipe-p, tipe-n dan tipe-p pada transistor PNP, dan tipe-n, tipe-p dan tipe-n pada transistor NPN. Setiap daerah semikonduktor disambungkan ke saluran yang juga dinamai ''emitor'' (E), ''basis'' (B) dan ''kolektor'' (C).
''Basis'' secara fisik terletak diantara ''emitor'' dan ''kolektor'', dan dibuat dari bahan [[semikonduktor]] terkotori ringan resistivitas tinggi. Kolektor mengelilingi daerah emitor, membuat hampir tidak mungkin untuk mengumpulkan elektron yang diinjeksikan ke daerah basis untuk melarikan diri, membuat harga α sangat dekat ke satu, dan juga memberikan β yang lebih besar. Irisan dari BJT menunjukkan bahwa pertemuan kolektor-basis jauh lebih besar dari pertemuan kolektor-basis.
Baris 43:
 
===NPN===
[[ImageBerkas:BJT NPN symbol (case).svg|thumb|100px|Simbol NPN BJT.]]
 
[[Berkas:Bipolar Junction Transistor NPN Structure.png|thumb|Struktur dasar transistor NPN]]
Baris 52:
===PNP===
Jenis lain dari BJT adalah PNP.
[[ImageBerkas:BJT PNP symbol (case).svg|thumb|100px|Simbol PNP BJT.]]
[[Berkas:Bipolar Junction Transistor PNP Structure.png|thumb|Struktur dasar transistor PNP]]
Transistor PNP terdiri dari selapis semikonduktor tipe-n diantara dua lapis semikonduktor tipe-p. Arus kecil yang meninggalkan basis pada moda tunggal emitor dikuatkan pada keluaran kolektor. Dengan kata lain, transistor PNP hidup ketika basis lebih rendah daripada emitor.
Baris 58:
 
===Transistor dwikutub pertemuan-taksejenis===
[[ImageBerkas:Pnp Heterostructure Bands.png|thumb|Jalur dalam transistor dwikutub pertemuan-taksejenis. Penghalang menunjukkan elektron untuk bergerak dari emitor ke basis, dan lubang untuk diinjeksikan kembali dari basis ke emitor.]]
[[Transistor dwikutub pertemuan-taksejenis]] ([[HBT]]) adalah sebuah penyempurnaan BJT sehingga dapat menangani isyarat frekuensi sangat tinggi hingga beberapa ratus [[GHz]]. Sekarang sering digunakan dalam sirkuit ultracepat, terutama sistem RF.<ref name=Williams>
{{cite book |author=D.V. Morgan, Robin H. Williams (Editors)|title=Physics and Technology of Heterojunction Devices|year=1991|publisher=Institution of Electrical Engineers (Peter Peregrinus Ltd.)|location=London |isbn=0863412041 |url=http://books.google.com/books?id=C98iH7UDtzwC&pg=PA210&dq=%22SIGe+heterojunction%22&as_brr=0&sig=6keqSOzQVPjnGn3Ism4CuhX7NHQ#PPA201,M1}}</ref><ref name=Ashburn>{{cite book|author=Peter Ashburn|title=SiGe Heterojunction Bipolar Transistors|year=2003|pages=Chapter 10|publisher=Wiley|location=New York|isbn=0470848383|url=http://worldcat.org/isbn/0470848383|nopp=true}}</ref>
Baris 77:
 
===Transistor dalam moda aktif-maju===
[[ImageBerkas:npn-structure.png|thumb|left|Transistor BJT NPN dalam moda aktif-maju]]
Diagram disamping menunjukkan transistor NPN disambungkan ke dua sumber tegangan. Untuk membuat transistor menghantar arus yang kentara dari C ke E, <math>V_{\text{BE}}</math> harus diatas harga minimum yang sering disebut sebagai ''tegangan potong''. Tegangan potong biasanya kira-kira 600 mV untuk BJT silikon pada suhu ruang, tetapi ini juga bisa berbeda-beda bergantung pada tipe transistor dan teknik pemanjaran.
Tegangan yang dikenakan ini membuat pertemuan P-N bagian bawah berubah menjadi hidup dan memungkinkan aliran elektron dari emitor ke basis. Pada moda aktif, medan listrik yang terdapat diantara basis dan kolektor (disebabkan oleh <math>V_{\text{CE}}</math>) akan menyebabkan mayoritas elektron untuk melintasi pertemuan P-N bagian atas menuju ke kolektor untuk membentuk arus kolektor <math>I_{\text{C}}</math>. Elektron yang tertinggal bergabung kembali dengan lubang yang merupakan pembawa mayoritas pada basis sehingga menimbulkan arus melalui sambungan basis untuk membentuk arus basis, <math>I_{\text{B}}</math>. Seperti yang diperlihatkan pada diagram, arus emitor <math>I_{\text{E}}</math>, adalah arus transistor total, yang merupakan penjumlahan arus saluran lainnya <math>(I_{\text{E}} = I_{\text{B}} + I_{\text{C}})</math>.
Baris 83:
Perlu diperhatikan bahwa arus emitor berhubungan dengan <math>V_{\text{BE}}</math> secara eksponensial. Pada suhu ruang, peningkatan <math>V_{\text{BE}}</math> sebesar kurang-lebih 60 mV meningkatkan arus emitor dengan faktor 10 kali lipat. Kerena arus basis kurang lebih sebanding dengan arus kolektor dan emitor, ini juga berubah dengan fungsi yang sama.
Untuk transistor PNP, secara umum cara kerjanya adalah sama, kecuali polaritas tegangan panjar yang dibalik dan fakta bahwa pembawa muatan mayoritas adalah lubang elektron.
[[ImageBerkas:pnp-structure.png|thumb|left|Transistor PNP dalam moda aktif-maju]]
 
===Transistor PNP moda aktif===
Baris 153:
[[de:Bipolartransistor]]
[[en:Bipolar junction transistor]]
[[et:Bipolaartransistor]]
[[es:Transistor de unión bipolar]]
[[et:Bipolaartransistor]]
[[eu:BJT transistore]]
[[fa:ترانزیستور دوقطبی پیوندی]]
[[fr:Transistor bipolaire]]
[[ko:접합형 트랜지스터]]
[[it:Transistor a giunzione bipolare]]
[[ja:バイポーラトランジスタ]]
[[ko:접합형 트랜지스터]]
[[lv:Bipolārais tranzistors]]
[[nl:Bipolaire transistor]]
[[ja:バイポーラトランジスタ]]
[[pl:Tranzystor bipolarny]]
[[pt:Transistor de junção bipolar]]
[[ro:Tranzistor bipolar]]
[[ru:Биполярный транзистор]]
[[sh:Bipolarni tranzistor]]
[[sl:Bipolarni tranzistor]]
[[sr:Биполарни транзистор]]
[[sh:Bipolarni tranzistor]]
[[sv:Bipolär transistor]]
[[vi:BJT]]
[[uk:Біполярний транзистор]]
[[vi:BJT]]
[[zh:双极性晶体管]]