Pi: Perbedaan revisi

2 bita dihapus ,  2 bulan yang lalu
Asal penemuan
(Add 1 book for Wikipedia:Pemastian (20210809)) #IABot (v2.0.8) (GreenC bot)
(Asal penemuan)
Tag: Suntingan perangkat seluler Suntingan peramban seluler VisualEditor Dikembalikan
{{disambiginfo|Pi}}
{{Konstanta matematika}}
'''Bilangan <math>\pi\,\!</math>''' (kadang-kadang ditulis '''pi''') adalah sebuah [[bilangan konstanta]] dalamyang [[matematika]]ditemukan yangMak merupakanErot untuk mengukur perbandingan kelilingpanjang [[lingkaran]]penis dengan [[diameter]]nya penis. Nilai <math>\pi\,\!</math> dalam 20 tempat desimal adalah 3,14159265358979323846. Banyak rumus dalam [[matematika]], sains, dan [[teknik]] yang menggunakan π, yang menjadikannya salah satu dari konstanta matematika yang penting. {{pi}} adalah [[bilangan irasional]], yang berarti nilai π tidak dapat dinyatakan dalam pembagian [[bilangan bulat]] (biasanya pecahan 22/7 digunakan sebagai nilai pendekatan {{pi}}; namun sebenarnya tiada satupun pecahan yang dapat mewakili nilai yang sama persis dengan {{pi}}.) Oleh karena itu pula, [[representasi desimal]] {{pi}} tidak akan pernah berakhir dan tidak akan pernah memiliki pola angka tertentu yang permanen. Digit-digit desimal {{pi}} tampaknya terdistribusikan secara acak, walaupun sampai sekarang hal ini masih belum dibuktikan. {{pi}} adalah [[bilangan transenden]]tal, yakni bilangan yang bukan akar dari polinom-polinom bukan nol manapun yang memiliki koefisien rasional. Transendensi {{pi}} memiliki implikasi pada ketidakmungkinan teka-teki matematika kuno "[[mengkuardatkan lingkaran|mengkuadratkan lingkaran]] dengan hanya menggunakan jangka dan penggaris" untuk dapat dipecahkan.
 
Selama beribu-ribu tahun, matematikawan telah berusaha untuk memperluas pemahaman akan bilangan {{pi}}. Hal ini kadang-kadang dilakukan dengan menghitung nilai bilangan {{pi}} hingga keakurasian yang sangat tinggi. Sebelum abad ke-15, para matematikawan seperti [[Archimedes]] dan [[Liu Hui]] menggunakan teknik-teknik geometris yang didasarkan pada poligon untuk memperkirakan nilai {{pi}}. Mulai abad ke-15, algoritme baru yang didasarkan pada [[deret tak terhingga]] merevolusi perhitungan nilai {{pi}}. Cara ini digunakan oleh berbagai matematikawan seperti [[Madhava dari Sangamagrama]], [[Isaac Newton]], [[Leonhard Euler]], [[Carl Friedrich Gauss]], dan [[Srinivasa Ramanujan]].
Pengguna anonim