Sistem imun: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Wikinesia (bicara | kontrib)
Tidak ada ringkasan suntingan
k ←Suntingan Wikinesia (bicara) dibatalkan ke versi terakhir oleh Faseislga
Tag: Pengembalian
Baris 2:
[[Berkas:Neutrophil with anthrax copy.jpg|jmpl|upright=1.15|Hasil [[Mikroskop pemindai elektron|pemindaian mikroskop elektron]] yang menunjukkan suatu [[neutrofil]] (kuning) yang sedang menelan bakteri [[Bacillus anthracis|antraks]] (jingga)]]
 
'''Sistem kekebalanimun''' atau '''sistem imunkekebalan''' adalah sel-sel dengandan banyak struktur biologis lainnya yang bertanggung jawab atas '''imunitas''', berupayaitu pertahanan pada [[organisme]] untuk melindungi tubuh dari pengaruh [[biologis]] luar dengan mengenali dan membunuh [[patogen]]. Sementara itu, respons kolektif dan terkoordinasi dari sistem kekebalanimun tubuh terhadap pengenalan zat asing disebut '''respons imun'''. Agar dapat berfungsi dengan baik, sistem ini akan mengidentifikasi berbagai macam pengaruh biologis luar seperti dari [[infeksi]], [[bakteri]], [[virus]] sampai [[parasit]], serta menghancurkan zat-zat asing lain dan memusnahkan mereka dari [[sel]] dan [[jaringan]] organisme yang sehat agar tetap berfungsi secara normal.
 
[[Manusia]] dan vertebrata berahang lainnya memiliki mekanisme pertahanan yang kompleks, yang dapat dibagi menjadi [[sistem kekebalanimun bawaan]] dan [[sistem kekebalanimun adaptif]]. Sistem kekebalanimun bawaan merupakan bentuk pertahanan awal yang melibatkan penghalang permukaan, reaksi peradangan, sistem komplemen, dan komponen seluler. Sistem kekebalanimun adaptif berkembang karena diaktifkan oleh sistem kekebalanimun bawaan dan memerlukan waktu untuk dapat mengerahkan respons pertahanan yang lebih kuat dan spesifik. Imunitas adaptif (atau dapatan) membentuk [[memori imunologis]] setelah respons awal terhadap patogen dan membuat perlindungan yang lebih ditingatkan pada pertemuan dengan patogen yang sama berikutnya. Proses imunitas dapatan ini menjadi dasar dari [[vaksinasi]].
 
Gangguan pada sistem kekebalanimun dapat berupa [[imunodefisiensi]], [[penyakit autoimun]], [[penyakit inflamasi]], dan [[kanker]].<ref name="pmid11506482">{{cite journal|date=Aug 2001|title=Chronic immune activation and inflammation as the cause of malignancy|journal=British Journal of Cancer|volume=85|issue=4|pages=473–83|doi=10.1054/bjoc.2001.1943|pmc=2364095|pmid=11506482|vauthors=O'Byrne KJ, Dalgleish AG}}</ref> [[Imunodefisiensi]] dapat terjadi ketika sistem kekebalanimun kurang aktif sehingga dapat menimbulkan infeksi berulang dan dapat mengancam jiwa. Pada manusia, imunodefisiensi dapat disebabkan karena faktor genetik seperti pada penyakit [[defisiensi imunitas kombinasi]] serta kondisi dapatan seperti [[AIDS|sindrom defisiensi imun dapatan]] (AIDS) yang disebabkan oleh [[retrovirus]] [[HIV]]. Sebaliknya, [[penyakit autoimun]] menyebabkan sistem kekebalanimun menjadi hiperaktif menyerang jaringan normal seakan-akan jaringan tersebut merupakan benda asing. Di satu sisi, ilmu pengetahuan pun terus berkembang dan manipulasi dalam kedokteran telah dilakukan. Penggunaan [[obat imunosupresif]] telah berhasil menekan sistem kekebalanimun yang hiperaktif, dan penggunaan [[imunoterapi]] telah dilakukan untuk pengobatan kanker.
 
[[Patogen]] dapat berevolusi secara cepat dan mudah beradaptasi agar terhindar dari identifikasi dan penghancuran oleh sistem kekebalanimun, tetapi mekanisme pertahanan tubuh juga berevolusi untuk mengenali dan menetralkan patogen. Bahkan organisme [[mikroorganisme|uniseluler]] seperti [[bakteri]] juga memiliki sistem kekebalanimun sederhana dalam bentuk [[enzim]] yang melindunginya dari [[infeksi]] [[bakteriofag]]. Mekanisme imun lainnya terbentuk melalui evolusi pada [[eukariota]] kuno tetapi masih ada hingga sekarang seperti pada tumbuhan dan [[Avertebrata|invertebrata]].
 
== Sejarah imunologi ==
[[Imunologi]] adalah ilmu yang mempelajari struktur dan fungsi sistem kekebalanimun. Imunologi awalnya berasal dari ilmu [[mikrobiologi]]. Imunitas pertama kali diketahui saat terjadi [[wabah Athena]] pada 430 SM. [[Thukidides]] mencatat bahwa orang yang sembuh dari penyakit sebelumnya dapat bertahan tanpa terkena penyakit lagi.<ref>{{cite journal | author = Retief F, Cilliers L | title = The epidemic of Athens, 430-426 BC | journal = S Afr Med J | volume = 88 | issue = 1 | pages = 50-3 | year = 1998 | id = PMID 9539938}}</ref> Lambat laun, diciptakan istilah "immunity" yang diturunkan dari istilah Latin "immunitas" untuk menggambarkan resistensi semacam itu. Pada abad ke-10, dokter Iran [[Muhammad bin Zakariya ar-Razi|Al-Razi]] merupakan orang pertama yang membedakan antara [[variola|cacar]] (''smallpox'') dan [[campak]] (''measles'') dan juga mencatat kemungkinan teori pertama tentang imunitas dapatan (''acquired immunity''). Pada abad ke-11, dokter dan filsuf [[Ibnu Sina]] juga mengusulkan teori lebih lanjut untuk imunitas dapatan.<ref name="early_trends">{{Cite journal|last=Doherty|first=M|last2=Robertson|first2=M|date=2004-12|title=Some early Trends in Immunology|url=https://linkinghub.elsevier.com/retrieve/pii/S1471490604003114|journal=Trends in Immunology|volume=25|issue=12|pages=623–631|doi=10.1016/j.it.2004.10.008|issn=1471-4906|pmid=|access-date=}}</ref>
 
Pada sekitar 1000 M, bangsa Tiongkok dilaporkan telah mempraktikkan bentuk imunisasi ini dengan menghirup bubuk kering yang berasal dari kulit [[lesi]] cacar. Pada awal abad ke-18 muncul minat baru pada imunitas dapatan melalui penggunaan [[variolasi]] sebagai tindakan pencegahan, yaitu dengan memasukkan sebagian dari lesi penderita cacar ke dalam tubuh orang yang sehat. Praktik variolasi juga makin umum dilakukan Inggris pada tahun 1720-an karena usaha [[Mary Wortley Montagu]], istri duta besar Inggris untuk [[Konstantinopel]] (sekarang Istanbul), yang mengamati efek positifnya dan melakukannya pada anak-anaknya. Pada tahun 1798 [[Edward Jenner]] mempublikasikan hasil vaksinasinya yang pertama, menggunakan nanah dari penderita [[cacar sapi]] (''cowpox'') dan disuntikkan ke seorang anak bernama James Phipps.<ref name="early_trends" />
Baris 20:
 
== Perlindungan berlapis ==
Sistem kekebalanimun tubuh melindungi organisme dari [[infeksi]] dengan perlindungan berlapis yang semakin dalam semakin tinggi spesifisitasnya (kekhususannya terhadap jenis infeksi). Pelindung fisik mencegah patogen seperti [[bakteri]] dan [[virus]] memasuki tubuh. Jika patogen melewati pelindung tersebut, [[sistem kekebalanimun bawaan]] menyediakan perlindungan dengan segera dalam hitungan menit hingga jam. Sistem kekebalanimun bawaan ditemukan pada semua jenis tumbuhan dan hewan.<ref name=Litman>{{cite journal | author = Litman G, Cannon J, Dishaw L | title = Reconstructing immune phylogeny: new perspectives. | journal = Nat Rev Immunol | volume = 5 | issue = 11 | pages = 866-79 | year = 2005 | id = PMID 16261174}}</ref> Jika patogen berhasil melewati respons bawaan, vertebrata memiliki lapisan perlindungan berikutnya yaitu [[sistem kekebalanimun adaptif]] yang diaktifkan oleh respons imun bawaan. Di sini, sistem kekebalanimun mengadaptasi respons tersebut selama infeksi untuk meningkatkan pengenalan patogen tersebut. Respons ini lalu dipertahankan setelah patogen dimusnahkan dalam wujud [[memori imunologis]] sehingga pada kemudian hari sistem kekebalanimun adaptif dapat melawan patogen yang sama dengan lebih cepat dan efektif.<ref name="Kurosaki_2015">{{cite journal|date=Maret 2015|title=Memory B cells|journal=Nature Reviews. Immunology|volume=15|issue=3|pages=149–59|doi=10.1038/nri3802|pmid=25677494|vauthors=Kurosaki T, Kometani K, Ise W}}</ref>
 
Sistem kekebalanimun bawaan dan sistem kekebalanimun adaptif keduanya memiliki komponen seluler dan humoral, dan masing-masing memberikan [[Sistem kekebalanimun dimediasi sel|imunitas diperantarai sel]] dan [[imunitas humoral]]. Imunitas diperantarai sel diperankan oleh sel-sel imun seperti [[neutrofil]], [[Makrofaga|makrofag]], [[sel NK]], dan [[limfosit]], sedangkan imunitas humoral diperankan oleh komponen terlarut seperti [[antibodi]] dan protein [[Sistem komplemen|komplemen]]. Antibodi adalah protein yang merupakan produk dari [[sel B]] yang teraktivasi yang berperan dalam menetralkan patogen dan menginisiasi proses imunologi yang lain seperti pengaktifan sistem komplemen, pengaktifan pembunuhan sel NK, sel T sitotoksik, dan sel-sel efektor lainnya.<ref>{{Cite journal|last=Forthal|first=Donald N.|date=2014-08-15|title=Functions of Antibodies|url=https://www.ncbi.nlm.nih.gov/pubmed/25215264|journal=Microbiology Spectrum|volume=2|issue=4|pages=1–17|issn=2165-0497|pmc=PMC4159104|pmid=25215264}}</ref>
 
<div align="center">
{| class="wikitable"
|+ '''Komponen sistem kekebalanimun'''
! style="background:#ccccff;" |[[#Imunitas bawaan|Sistem kekebalanimun bawaan]]||style="background:#ccccff;" |[[#Imunitas adaptif|Sistem kekebalanimun adaptif]]
|-
| Respons tidak spesifik || Respons spesifik patogen dan [[antigen]]
Baris 41:
</div>
 
Baik imunitas bawaan dan adaptif bergantung pada kemampuan sistem kekebalanimun untuk membedakan [[molekul]] ''self'' dan ''non-self''. Dalam [[imunologi]], molekul ''self'' adalah komponen tubuh organisme yang dapat dibedakan dari bahan asing oleh sistem kekebalanimun. Sebaliknya, molekul ''non-self'' adalah yang dianggap sebagai molekul asing. Satu kelas dari molekul ''non-self'' adalah [[antigen]] (kependekan dari bahasa Inggris ''antibody generator'' atau "pembangkit antibodi") yaitu bahan-bahan yang mengikat [[reseptor imun]] tertentu dan membangkitkan respons imun.<ref>Smith A.D. (Ed) ''Oxford dictionary of biochemistry and molecular biology.'' (2000) [1997] Oxford University Press. ISBN 0-19-854768-4, hlm. 592</ref>
 
Bayi yang baru lahir mendapat beberapa lapisan perlindungan pasif yang disediakan oleh ibu. Selama [[kehamilan]], jenis antibodi yang disebut [[Antibodi G|IgG]] yang dikirim dari ibu ke bayi secara langsung melewati [[plasenta]], sehingga bayi memiliki antibodi tinggi bahkan saat lahir, dengan rentang spesifisitas antigen (fragmen kecil patogen) yang sama dengan ibunya.<ref>{{cite journal|author=Saji F, Samejima Y, Kamiura S, Koyama M|year=1999|title=Dynamics of immunoglobulins at the feto-maternal interface.|url=http://ror.reproduction-online.org/cgi/reprint/4/2/81.pdf|journal=Rev Reprod|volume=4|issue=2|pages=81-9|id=PMID 10357095}}</ref> [[Air susu ibu]] atau [[kolostrum]] juga mengandung antibodi yang dikirim ke [[sistem pencernaan]] bayi dan melindungi bayi terhadap infeksi bakteri sampai bayi dapat menyintesis antibodinya sendiri.<ref>{{cite journal|author=Van de Perre P|year=2003|title=Transfer of antibody via mother's milk.|journal=Vaccine|volume=21|issue=24|pages=3374–6|id=PMID 12850343}}</ref> Hal ini disebut imunitas pasif karena [[fetus]] tidak membuat sel memori atau antibodi sendiri. Pada ilmu kedokteran, imunitas pasif protektif juga dapat dikirim dari satu individu ke individu lainnya melalui [[plasma darah|serum]] yang kaya antibodi.<ref name="Keller">{{cite journal|author=Keller, Margaret A. and E. Richard Stiehm|year=2000|title=Passive Immunity in Prevention and Treatment of Infectious Diseases.|url=http://cmr.asm.org/cgi/content/full/13/4/602|journal=Clinical Microbiology Reviews|volume=13|issue=4|pages=602–614|id=PMID 11023960}}</ref>
 
== Sistem kekebalanimun bawaan ==
{{main|Sistem kekebalanimun bawaan}}
Mikroorganisme atau racun yang berhasil memasuki organisme akan berhadapan dengan mekanisme [[sistem kekebalanimun bawaan]]. Respons bawaan biasanya dijalankan ketika mikroba teridentifikasi oleh [[reseptor pengenal pola]] (''pattern recognition receptor'', PRR) yang mengenali komponen yang disebut [[pola molekuler terkait patogen]] (''pathogen-associated molecular pattern'', PAMP),<ref name="pmid179431182">{{cite journal|date=Oct 2007|title=Recognition of microorganisms and activation of the immune response|journal=Nature|volume=449|issue=7164|pages=819–26|bibcode=2007Natur.449..819M|doi=10.1038/nature06246|pmid=17943118|vauthors=Medzhitov R}}</ref> atau [[pola molekuler terkait kerusakan]] (''damage-associated molecular pattern'', DAMP).<ref name="pmid11951032">{{cite journal|date=Apr 2002|title=The danger model: a renewed sense of self|url=http://www.scs.carleton.ca/~soma/biosec/readings/matzinger-science.pdf|journal=Science|volume=296|issue=5566|pages=301–5|bibcode=2002Sci...296..301M|doi=10.1126/science.1071059|pmid=11951032|vauthors=Matzinger P}}</ref> Sistem ini tidak memberikan perlindungan yang bertahan lama terhadap serangan patogen, sehingga diperlukan sistem kekebalanimun lain yaitu sistem kekebalanimun adaptif. Sistem kekebalanimun bawaan merupakan sistem dominan pertahanan tubuh pada kebanyakan organisme.<ref name=Litman/>
 
=== Penghalang permukaan ===
Baris 54:
Penghalang kimiawi juga melindungi tubuh terhadap infeksi. Kulit dan sistem pernapasan mengeluarkan [[peptida antimikrobial]] seperti β-[[defensin]].<ref>{{cite journal | author = Agerberth B, Gudmundsson G | title = Host antimicrobial defence peptides in human disease. | journal = Curr Top Microbiol Immunol | volume = 306 | issue = | pages = 67–90 | year = | id = PMID 16909918}}</ref> [[Enzim]] seperti [[lisozim]] dan [[fosfolipase A2]] pada [[air liur]], air mata, dan [[air susu ibu]] juga bersifat [[Antiseptik|antibakteri]].<ref>{{cite journal | author = Moreau J, Girgis D, Hume E, Dajcs J, Austin M, O'Callaghan R | title = Phospholipase A(2) in rabbit tears: a host defense against Staphylococcus aureus. | url=http://www.iovs.org/cgi/content/full/42/10/2347 | journal = Invest Ophthalmol Vis Sci | volume = 42 | issue = 10 | pages = 2347–54 | year = 2001 | id = PMID 11527949}}</ref><ref>{{cite journal | author = Hankiewicz J, Swierczek E | title = Lysozyme in human body fluids. | journal = Clin Chim Acta | volume = 57 | issue = 3 | pages = 205-9 | year = 1974 | id = PMID 4434640}}</ref> Sekresi [[vagina]] berperan sebagai penghalang kimiawi selama menstruasi pertama, membuat lingkungan vagina agak bersifat asam, sementara [[Semen (reproduksi)|semen]] mengandung [[defensin]] dan [[seng]] untuk membunuh patogen.<ref>{{cite journal | author = Fair W, Couch J, Wehner N | title = Prostatic antibacterial factor. Identity and significance. | journal = Urology | volume = 7 | issue = 2 | pages = 169-77 | year = 1976 | id = PMID 54972}}</ref><ref>{{cite journal | author = Yenugu S, Hamil K, Birse C, Ruben S, French F, Hall S | title = Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli. | url=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1223422&blobtype=pdf | journal = Biochem J | volume = 372 | issue = Pt 2 | pages = 473-83 | year = 2003 | id = PMID 12628001}}</ref> Pada [[lambung]], [[asam lambung]] dan [[protease]] menyediakan pertahanan kimiawi yang sangat kuat untuk melawan patogen yang tertelan.<ref>{{Cite web|url=https://www.britannica.com/science/proteolytic-enzyme|title=Proteolytic enzyme {{!}} enzyme|website=Encyclopedia Britannica|language=en|access-date=2019-01-31}}</ref>
 
[[Mikroflora normal manusia|Flora komensal]] dalam [[Sistem pencernaan|saluran pencernaan]] dan [[Sistem urogenital|saluran urogenital]] merupakan penghalang biologi yang bersaing dengan patogen untuk makanan dan tempat. Selain itu, flora komensal kadang mengubah kondisi lingkungan mereka seperti [[pH]] atau ketersediaan zat [[besi]].<ref>{{cite journal | author = Gorbach S | title = Lactic acid bacteria and human health | journal = Ann Med | volume = 22 | issue = 1 | pages = 37–41 | year = 1990 | id = PMID 2109988}}</ref> Hal ini menyebabkan adanya hubungan simbiosis antara flora komensal dan sistem kekebalanimun, hingga mengurangi jumlah patogen dan kemungkinan munculnya penyakit. Namun, karena kebanyakan [[antibiotik]] menyasar bakteri dan tidak menyerang [[fungi]], antibiotik oral dapat mengakibatkan "pertumbuhan berlebih" dari fungi dan dapat memicu kondisi seperti [[Keputihan|kandiasis vagina]] (infeksi jamur pada vagina).<ref>{{cite journal | author = Hill L, Embil J | title = Vaginitis: current microbiologic and clinical concepts. | url=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1490817&blobtype=pdf | journal = CMAJ | volume = 134 | issue = 4 | pages = 321-31 | year = 1986 | id = PMID 3510698}}</ref> Terdapat bukti kuat bahwa konsumsi flora [[probiotik]], seperti kultur murni [[lactobacillus]] (umum ditemukan pada [[yogurt]] yang belum dipasteurisasi), membantu mengembalikan keseimbangan komposisi mikroba pada usus anak-anak yang terkena infeksi. Hasil penelitian awal juga menunjukkan hal yang serupa dalam kasus [[Gastroenteritis|gastroenteritis bakterial]], [[Penyakit radang usus|radang usus]], [[infeksi saluran kemih]], dan infeksi setelah operasi.<ref>{{cite journal |author=Reid G, Bruce A |title=Urogenital infections in women: can probiotics help? |url=http://pmj.bmj.com/cgi/content/full/79/934/428 |journal=Postgrad Med J |volume=79 |issue=934 |pages=428-32 |year=2003 |pmid=12954951}}</ref><ref>{{cite journal | author = Salminen S, Gueimonde M, Isolauri E | title = Probiotics that modify disease risk | url=http://jn.nutrition.org/cgi/content/full/135/5/1294 | journal = J Nutr | volume = 135 | issue = 5 | pages = 1294–8 | year = 2005 | id = PMID 15867327}}</ref><ref>{{cite journal |author=Reid G, Jass J, Sebulsky M, McCormick J |title=Potential uses of probiotics in clinical practice |journal=Clin Microbiol Rev |volume=16 |issue=4 |pages=658-72 |year=2003 |pmid=14557292}}</ref>
 
=== Peradangan ===
{{main|Radang}}
Peradangan merupakan salah satu dari respons pertama sistem kekebalanimun terhadap infeksi.<ref>{{cite journal | author = Kawai T, Akira S | title = Innate immune recognition of viral infection | journal = Nat Immunol | volume = 7 | issue = 2 | pages = 131-7 | year = 2006 | id = PMID 16424890}}</ref> Gejala peradangan yaitu kemerahan, bengkak, dan nyeri yang diakibatkan oleh peningkatan aliran [[darah]] ke jaringan. Peradangan dihasilkan oleh senyawa-senyawa [[eikosanoid]] dan molekul [[sitokin]], yang dilepaskan oleh sel yang terinfeksi. Senyawa-senyawa [[eikosanoid]], termasuk [[prostaglandin]], menginduksi [[demam]] dan pelebaran [[pembuluh darah]], dan [[Eikosanoid#leukotrien|leukotrien]] yang menarik [[sel darah putih]] (leukosit).<ref>{{cite journal | author = Miller, SB | title = Prostaglandins in Health and Disease: An Overview | journal = Seminars in Arthritis and Rheumatism | volume = 36 | issue = 1 | pages = 37–49| year = 2006 | id = PMID 16887467}}</ref><ref>{{cite journal | author = Ogawa Y, Calhoun WJ. | title = The role of leukotrienes in airway inflammation. | journal = J Allergy Clin Immunol. | volume = 118 | issue = 4 | pages = 789–98| year = 2006 | id = PMID 17030228}}</ref> [[Sitokin]] juga terlibat, termasuk [[interleukin]] yang bertanggung jawab untuk komunikasi antarsel darah putih; [[kemokin]] yang mendorong [[kemotaksis]]; dan [[interferon]] yang memiliki kemampuan antivirus, seperti menghentikan [[Protein#Sintesis protein|sintesis protein]] virus yang sedang menginfeksi sel inang.<ref>{{cite journal | author = Le Y, Zhou Y, Iribarren P, Wang J | title = Chemokines and chemokine receptors: their manifold roles in homeostasis and disease | url=http://www.nature.com/bjp/journal/v147/n1s/pdf/0706475a.pdf | journal = Cell Mol Immunol | volume = 1 | issue = 2 | pages = 95–104 | year = 2004 | id = PMID 16212895}}</ref> Faktor pertumbuhan dan faktor [[sitotoksik]] juga dapat dilepaskan. Sitokin dan senyawa kimia lainnya mengerahkan sel-sel imun ke tempat infeksi dan menyembuhkan jaringan yang mengalami kerusakan yang diikuti dengan pemusnahan patogen.<ref>{{cite journal | author = Martin P, Leibovich S | title = Inflammatory cells during wound repair: the good, the bad and the ugly. | journal = Trends Cell Biol | volume = 15 | issue = 11 | pages = 599–607 | year = 2005 | id = PMID 16202600}}</ref>
 
=== Sistem komplemen ===
Baris 69:
[[Berkas:SEM blood cells.jpg|jmpl|ka|220px|Gambar [[darah]] normal manusia diamati menggunakan [[mikroskop elektron]]. Dapat terlihat [[sel darah merah]], dan juga terlihat sel darah putih termasuk [[limfosit]], [[monosit]], [[neutrofil]] dan banyak [[platelet]] kecil lainnya.]]
 
Leukosit ([[sel darah putih]]) bertindak layaknya organisme bersel tunggal yang bebas dan merupakan pertahanan penting dalam sistem kekebalanimun bawaan. Jenis-jenis leukosit dalam sistem kekebalanimun bawaan di antaranya [[fagosit]] (makrofag, [[neutrofil]], dan [[sel dendritik]]), [[sel limfoid bawaan]], [[Mastosit|sel mast]], [[eosinofil]], [[basofil]], dan [[sel NK]]. Sel-sel tersebut mengidentifikasi dan menghilangkan patogen dengan cara menyerang patogen yang lebih besar melalui kontak atau dengan cara menelan dan lalu membunuh mikroorganisme.<ref name=Alberts/>{{rp|1301}} Sel-sel pada imunitas bawaan juga merupakan mediator penting pada pengaktifan [[sistem kekebalanimun adaptif]].<ref>{{cite journal | author = Iwasaki A, Medzhitov R. | title = Control of adaptive immunity by the innate immune system | journal = Nat Immunol. | volume = 16 | issue = 4 | pages = 343-53 | year = 2015 | id = PMID 25789684}}</ref>
 
Makrofag, neutrofil, dan sel dendritik merupakan kelas sel sensor yang mendeteksi dan menginisiasi respons imun dengan menghasilkan mediator inflamasi. Sel-sel ini mengekspresikan sejumlah reseptor terbatas untuk mengenali patogen atau sel yang rusak, bernama PRR. Beberapa PRR merupakan [[reseptor transmembran]] (reseptor pada permukaan sel), seperti [[reseptor jenis Toll]] (''Toll-like receptor'', TLR) yang dapat mendeteksi struktur [[pola molekuler terkait patogen]] (''pathogen-associated molecular pattern,'' PAMP) yang dihasilkan oleh bakteri ekstraseluler atau bakteri yang ditangkap dan mengalami fagositosis. PRR lainnya merupakan protein sitoplasmik (berada di sitoplasma) misalnya [[reseptor jenis NOD]] (''NOD-like receptor'', NLR) yang dapat mendeteksi serangan bakteri intraseluler.<ref name=Jan>{{cite book|last = Murphy|first = Kenneth|coauthors = Casey Weaver|title = Janeway's Immunobiology |edition= 9|publisher = Garland Science|date = 2017|location = New York and London|url = https://books.google.co.jp/books/about/Janeway_s_Immunobiology.html?id=GmPLCwAAQBAJ&redir_esc=y|id = ISBN 978-0-8153-4551-0}}</ref>{{rp|9}}
Baris 78:
[[Neutrofil]] dan [[monosit]] merupakan [[fagosit]] utama yang berkeliling di seluruh tubuh untuk mengejar dan menyerang patogen.<ref>{{cite journal | author = Zen K, Parkos C | title = Leukocyte-epithelial interactions | journal = Curr Opin Cell Biol | volume = 15 | issue = 5 | pages = 557-64 | year = 2003 | id = PMID 14519390}}</ref> [[Neutrofil]] ditemukan di aliran darah dan merupakan jenis fagosit yang paling melimpah, normalnya sebanyak 50% sampai 60% jumlah leukosit yang bersirkulasi.<ref name="IandF">{{cite book|last = Stvrtinová|first = Viera|coauthors = Ján Jakubovský and Ivan Hulín|title = ''Inflammation and Fever'' from Pathophysiology: Principles of Disease|publisher = Academic Electronic Press|date = 1995|location = Computing Centre, Slovak Academy of Sciences|url = http://web.archive.org/web/20010711220523/nic.savba.sk/logos/books/scientific/Inffever.html|accessdate = 2007-01-01}}</ref> Selama radang fase akut, terutama karena infeksi bakteri, [[neutrofil]] bermigrasi ke tempat radang dalam sebuah proses yang disebut [[kemotaksis]], dan merupakan sel pertama yang tiba pada saat infeksi.<ref>{{Cite journal|last=Edwards|first=Steven W.|last2=Bucknall|first2=Roger C.|last3=Moots|first3=Robert J.|last4=Wright|first4=Helen L.|date=2010-09-01|title=Neutrophil function in inflammation and inflammatory diseases|url=https://academic.oup.com/rheumatology/article/49/9/1618/1785197|journal=Rheumatology|language=en|volume=49|issue=9|pages=1618–1631|doi=10.1093/rheumatology/keq045|issn=1462-0324}}</ref>
 
[[Makrofag]] merupakan sel serba guna yang bermukim pada jaringan dan menghasilkan banyak zat-zat kimia termasuk enzim, [[sistem komplemen|protein komplemen]], dan [[sitokin]]. Makrofag juga bertindak sebagai "sel pemakan" yang membersihkan tubuh dari sel mati dan debris (pecahan komponen sel) lainnya, dan sebagai [[sel penyaji antigen]] yang mengaktifkan sistem kekebalanimun adaptif.<ref>{{cite journal | author = Murray PJ, Wynn TA | title = Protective and pathogenic functions of macrophage subsets | journal = Nat Rev Immunol. | volume = 11 | issue = 1 | pages = 723-37 | year = 2011 | id = PMID 15283665}}</ref>
 
==== Sel dendritik ====
 
[[Sel dendritik]] adalah fagosit pada jaringan yang berhubungan dengan lingkungan luar; oleh karena itu, sel-sel ini terutama berada di [[kulit]], [[hidung]], [[paru-paru]], [[lambung]], dan [[usus]].<ref name=Guermonprez>{{cite journal | author = Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S | title = Antigen presentation and T cell stimulation by dendritic cells | journal = Annu Rev Immunol | volume = 20 | issue = | pages = 621-67 | year = | id = PMID 11861614}}</ref> Mereka dinamai demikian karena kemiripannya dengan [[dendrit|dendrit saraf]], keduanya memiliki proyeksi seperti paku, tetapi sel dendritik tidak ada hubungan dengan [[sistem saraf]]. Sel dendritik menyediakan hubungan antara sistem kekebalanimun adaptif dan bawaan, dengan cara menyajikan antigen kepada [[sel T]].<ref name=Guermonprez/>
 
==== Sel pembunuh alami ====
Sel pembunuh alami (Inggris: ''Natural Killer,'' NK) merupakan komponen sistem kekebalanimun bawaan yang tidak secara langsung menyerang mikroba penyerang.<ref name="pmid28078307">{{cite journal |vauthors=Gabrielli S, Ortolani C, Del Zotto G, Luchetti F, Canonico B, Buccella F, Artico M, Papa S, Zamai L |title=The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk |journal=Journal of Immunology Research |volume=2016 |issue= |pages=1376595 |year=2016 |pmid=28078307 |pmc=5204097 |doi=10.1155/2016/1376595 |url=}}</ref> Sebaliknya, sel-sel NK menghancurkan sel-sel inang yang terinfeksi atau sel yang bertransformasi.<ref>{{cite journal|author=Middleton D, Curran M, Maxwell L|year=2002|title=Natural killer cells and their receptors|journal=Transpl Immunol|volume=10|issue=2–3|pages=147-64|id=PMID 12216946}}</ref> Sel-sel demikian dinamakan "''missing self''" ("kehilangan pengenalan diri") dikarenakan sel memiliki penanda permukaan sel (disebut MHC I) yang sangat rendah. Sel NK dinamai "pembunuh alami" karena gagasan awal bahwa mereka tidak memerlukan pengaktifan untuk membunuh sel-sel yang "''missing self''." Sel-sel tubuh normal tidak dikenali dan tidak diserang oleh sel-sel NK karena mereka mengekspresikan antigen MHC diri yang utuh. Kompleks antigen diri MHC itu dikenali oleh reseptor imunoglobulin sel pembunuh (KIR) yang menahan aktivitas sel NK.<ref name="pmid22665247">{{cite journal | vauthors = Rajalingam R | title = Overview of the killer cell immunoglobulin-like receptor system | journal = Methods in Molecular Biology | volume = 882 | issue = | pages = 391–414 | year = 2012 | pmid = 22665247 | doi = 10.1007/978-1-61779-842-9_23 | isbn = 978-1-61779-841-2 | series = Methods in Molecular Biology™ }}</ref>
 
==== Sel mast ====
Baris 94:
 
==== Sel limfoid bawaan ====
Sel limfoid bawaan (Inggris: ''innate lymphoid cell'', ILC) adalah sekelompok sel imun bawaan yang termasuk dalam garis keturunan [[limfoid]], tetapi tidak memiliki [[reseptor sel B]] atau [[reseptor sel T]] spesifik antigen. ILC juga tidak mengekspresikan penanda sel [[myeloid]] atau dendritik.<ref>{{Cite journal|last=Spits|first=Hergen|last2=Cupedo|first2=Tom|year=2012|title=Innate lymphoid cells: emerging insights in development, lineage relationships, and function|url=|journal=Annual Review of Immunology|volume=30|issue=|pages=647–675|doi=10.1146/annurev-immunol-020711-075053|pmid=22224763}}</ref> Kelompok sel ini memiliki fungsi fisiologis yang bervariasi; beberapa fungsi dianalogikan dengan sel T pembantu, sementara kelompok ini juga termasuk sel NK sitotoksik. Oleh karena itu, mereka memiliki peran penting dalam kekebalan protektif dan pengaturan [[homeostasis]] dan peradangan, sehingga kelainan pada ILC dapat menyebabkan gangguan sistem kekebalanimun seperti [[alergi]], [[Asma|asma bronkial]], dan [[penyakit autoimun]].<ref>{{Cite journal|last=Walker|first=Jennifer A|last2=Jillian L. Barlow|last3=Andrew N. J. McKenzie|year=2013|title=Innate lymphoid cells—how did we miss them |url=http://www.nature.com/nri/journal/v13/n2/abs/nri3349.html|journal=Nature Reviews Immunology|volume=13|issue=2|pages=75–87|doi=10.1038/nri3349|issn=1474-1733|access-date=2013-08-03}}</ref>
 
== Sistem kekebalanimun adaptif ==
{{main|Sistem kekebalanimun adaptif}}
 
Sistem kekebalanimun adaptif berevolusi pada vertebrata awal dan membuat adanya respons imun yang lebih kuat serta terbentuknya memori imunologi, yaitu tiap patogen "diingat" oleh pengenal antigen.<ref>{{cite journal | author = Pancer Z, Cooper M | title = The evolution of adaptive immunity | journal = Annu Rev Immunol | volume = 24 | issue = | pages = 497–518 | year = | id = PMID 16551257}}</ref> Respons imun adaptif bersifat spesifik terhadap antigen tertentu dan membutuhkan pengenalan antigen ''non-self'' tertentu selama proses yang disebut presentasi antigen. Spesifisitas antigen memungkinkan produksi respons yang disesuaikan pada patogen tertentu atau sel tertentu yang terinfeksi patogen. Kemampuan tersebut dipelihara di tubuh oleh "sel memori". Sel-sel memori ini akan segera memusnahkan dengan cepat patogen-patogen yang menginfeksi sel kembali di kemudian hari.
 
=== Imunitas diperantarai sel ===
Komponen sel utama pada sistem kekebalanimun adaptif yaitu jenis leukosit khusus yang disebut [[limfosit]]. [[Sel T|Limfosit T]] (sel T) dan [[Sel B|limfosit B]] (sel B) merupakan jenis limfosit utama yang berasal dari sel punca hematopoietik pada [[sumsum tulang]].<ref name=Jan/>{{rp|297}} Sel T terlibat dalam respons imun diperantarai sel, sedangkan sel B terlibat dalam respons imun humoral.<ref>{{Cite journal|last=Shlomchik|first=Mark J.|last2=Walport|first2=Mark|last3=Travers|first3=Paul|last4=Charles A Janeway|first4=Jr|date=2001|title=T Cell-Mediated Immunity|url=https://www.ncbi.nlm.nih.gov/books/NBK10762/|journal=Immunobiology: The Immune System in Health and Disease. 5th edition|language=en}}</ref> Baik sel T dan sel B memiliki reseptor yang mengenali target spesifik. Sel T mengenali target ''non-self'' seperti patogen, tetapi hanya jika antigen telah diolah dan disajikan pada molekul [[kompleks histokompatibilitas utama]] ({{lang-en|major histocompatibility complex}}, disingkat MHC).<ref name="Jan" />{{rp|14}} Sementara itu, reseptor antigen pada sel B, yang merupakan suatu molekul [[antibodi]] pada permukaan, dapat mengenali semua patogen tanpa perlu adanya pengolahan antigen. Tiap garis keturunan sel B memiliki antibodi yang berbeda, sehingga kumpulan reseptor antigen sel B yang lengkap mewakili semua antibodi yang dapat diproduksi oleh tubuh.<ref name="Jan" />{{rp|12}}
 
Awalnya, subtipe sel T dibagi menjadi dua yaitu [[sel T pembunuh|sel T sitotoksik]] (sel T pembunuh) dan [[sel T pembantu]]. Namun seiring pesatnya penelitian imunologi pada dekade terakhir, banyak ditemukan jenis lain dari limfosit misalnya [[sel T gamma delta]] (sel T γδ). Sel T sitotoksik hanya mengenali antigen yang dirangkaikan pada molekul [[Kompleks histokompatibilitas utama#Protein MHC kelas I|MHC kelas I]], sementara sel T pembantu hanya mengenali antigen yang dirangkaikan pada molekul [[Kompleks histokompatibilitas utama#Protein MHC kelas II|MHC kelas II]]. Dua mekanisme presentasi antigen tersebut memunculkan peran berbeda dua tipe sel T. Jenis lain sel T yang termasuk subtipe minor yaitu sel T γδ, yang mengenali antigen yang tidak melekat pada molekul [[Kompleks histokompatibilitas utama|MHC]].<ref>{{cite journal | author = Holtmeier W, Kabelitz D | title = gammadelta T cells link innate and adaptive immune responses | journal = Chem Immunol Allergy | volume = 86 | issue = | pages = 151-83 | year = | id = PMID 15976493}}</ref>
Baris 116:
 
==== Sel T gamma delta ====
Sel T gamma delta (sel T γδ) memiliki reseptor sel T alternatif yang berbeda dengan sel T CD4+ dan CD8+ (αβ), serta memiliki ciri yang mirip dengan sel T pembantu, sel T sitotoksik, dan sel NK, sehingga berada pada perbatasan antara sistem kekebalanimun adaptif dan sistem kekebalanimun bawaan.<ref>{{cite journal | author = Girardi M | title = Immunosurveillance and immunoregulation by γδ T cells | journal = J Invest Dermatol | volume = 126 | issue = 1 | pages = 25–31 | year = 2006 | id = PMID 16417214}}</ref> Di satu sisi, sel T γδ merupakan komponen dari [[sistem kekebalanimun adaptif]] karena gen reseptor sel T menjalani penataan ulang dan menghasilan diversitas reseptor serta dapat mengembangkan memori. Di sisi lain, beberapa bagian sel ini merupakan komponen sistem kekebalanimun bawaan karena reseptor sel T atau reseptor NK yang dimilikinya dapat digunakan sebagai PRR. Contohnya sejumlah besar sel T Vγ9/Vδ2 berespons dalam hitungan jam terhadap molekul umum yang diproduksi oleh mikroba, dan jenis sel T Vδ1+ yang khusus hanya ada di [[epitelium]], merespons terhadap sel epitelial yang rusak.<ref>{{cite journal | author = Holtmeier W, Kabelitz D | title = γδ T cells link innate and adaptive immune responses | journal = Chem Immunol Allergy | volume = 86 | pages = 151–183 | year = 2005 | id = PMID 15976493}}</ref>
[[Berkas:Antibody illustration.svg|jmpl|220px|ka|Antibodi tersusun dari dua rantai berat dan dua rantai ringan. Daerah variasi unik membuat antibodi mengenali antigen yang cocok.<ref name=NIAID/>{{rp|8}}]]
 
=== Imunitas humoral ===
Pada sistem kekebalanimun adaptif, peran utama imunitas humoral dijalankan oleh antibodi yang dihasilkan oleh sel B. Sel B mengidentifikasi patogen ketika antibodi yang terikat pada permukaan sel B berikatan dengan antigen asing spesifik.<ref name=Sproul>{{cite journal | author = Sproul T, Cheng P, Dykstra M, Pierce S | title = A role for MHC class II antigen processing in B cell development | journal = Int Rev Immunol | volume = 19 | issue = 2–3 | pages = 139-55 | year = 2000 | id = PMID 10763706}}</ref> Kompleks antigen:antibodi ini ditelan oleh sel B kemudian antigen dipecah menjadi potongan [[peptida]] ([[proteolisis|proteolisis)]]. Selanjutnya sel B menyajikan peptida antigenik pada permukaan molekul MHC kelas II. Kompleks [[Kompleks histokompatibilitas utama|MHC]] dan antigen ini menarik sel T pembantu yang memiliki kesesuaian dengan antigen, yang selanjutnya melepaskan [[sitokin]] dan mengaktifkan sel B.<ref>{{cite journal | author = Kehry M, Hodgkin P | title = B-cell activation by helper T-cell membranes | journal = Crit Rev Immunol | volume = 14 | issue = 3–4 | pages = 221-38 | year = 1994 | id = PMID 7538767}}</ref> Sel B yang aktif berikutnya berdiferensiasi menjadi [[sel plasma]] yang mengeluarkan jutaan antibodi yang mengenali antigen itu. Antibodi tersebut diedarkan pada plasma darah dan limfatik, mengikat patogen dan menandainya untuk dihancurkan oleh pengaktifan komplemen, atau untuk penghancuran oleh fagosit. Antibodi juga dapat menetralkan toksin bakteri atau dengan mengganggu reseptor yang digunakan virus dan bakteri untuk menginfeksi sel.<ref>{{cite journal | author = Baldridge JR, Buchmeier MJ| title = Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. | journal = J. Virol | volume = 66 | issue = 7 | pages = 4252-7 | year = 1992 | id = PMID 1376367}}</ref>
 
== Regulasi fisiologis ==
Sistem kekebalanimun terlibat dalam banyak aspek regulasi fisiologis dalam tubuh. Sistem kekebalanimun berinteraksi secara intensif dengan sistem lain, seperti sistem endokrin <ref>{{Cite journal|last=WICK|first=G.|last2=HU|first2=Y.|last3=SCHWARZ|first3=S.|last4=KROEMER|first4=G.|date=1993-10-01|title=Immunoendocrine Communication via the Hypothalamo-Pituitary-Adrenal Axis in Autoimmune Diseases*|url=https://academic.oup.com/edrv/article-abstract/14/5/539/2548428/Immunoendocrine-Communication-via-the-Hypothalamo?redirectedFrom=fulltext|journal=Endocrine Reviews|language=en|volume=14|issue=5|pages=539–563|doi=10.1210/edrv-14-5-539|issn=0163-769X}}</ref><ref>{{Cite journal|last=Kroemer|first=Guido|last2=Brezinschek|first2=Hans-Peter|last3=Faessler|first3=Reinhard|last4=Schauenstein|first4=Konrad|last5=Wick|first5=Georg|date=1988-01-01|title=Physiology and pathology of an immunoendocrine feedback loop|url=http://www.sciencedirect.com/science/article/pii/0167569988912893|journal=Immunology Today|volume=9|issue=6|pages=163–165|doi=10.1016/0167-5699(88)91289-3}}</ref> dan saraf <ref>{{Cite journal|last=Trakhtenberg|first=Ephraim F.|last2=Goldberg|first2=Jeffrey L.|date=2011-10-07|title=Neuroimmune Communication|url=http://science.sciencemag.org/content/334/6052/47|journal=Science|language=en|volume=334|issue=6052|pages=47–48|doi=10.1126/science.1213099|issn=0036-8075|pmid=21980100|bibcode=2011Sci...334...47T}}</ref><ref>{{Cite journal|last=Veiga-Fernandes|first=Henrique|last2=Mucida|first2=Daniel|date=2016-05-05|title=Neuro-Immune Interactions at Barrier Surfaces|journal=Cell|volume=165|issue=4|pages=801–811|doi=10.1016/j.cell.2016.04.041|issn=1097-4172|pmc=4871617|pmid=27153494}}</ref><ref>{{Cite journal|date=Februari 2017|title=Neuroimmune communication|url=http://www.nature.com/neuro/journal/v20/n2/full/nn.4496.html|journal=Nature Neuroscience|language=en|volume=20|issue=2|pages=127–127|doi=10.1038/nn.4496|issn=1097-6256}}</ref>. Sistem kekebalanimun tubuh juga memainkan peran penting dalam perkembangan serta dalam perbaikan jaringan dan regenerasi.<ref>{{Cite journal|last=Olson|first=Eric N.|last2=Aurora|first2=Arin B.|date=2014-07-03|title=Immune Modulation of Stem Cells and Regeneration|url=https://www.cell.com/cell-stem-cell/abstract/S1934-5909(14)00257-4|journal=Cell Stem Cell|language=English|volume=15|issue=1|pages=14–25|doi=10.1016/j.stem.2014.06.009|issn=1934-5909|pmc=PMC4131296|pmid=24996166}}</ref>
 
=== Hormon ===
[[Hormon]] dapat bertindak sebagai [[Imunoterapi#imunomodulator|imunomodulator]], yaitu mengubah sensitivitas sistem kekebalanimun. Sebagai contoh, hormon seks wanita diketahui menstimulasi baik respons imun adaptif <ref>{{cite book|last = Wira|first = CR|coauthors = Crane-Godreau M, Grant K|year = 2004|chapter = Endocrine regulation of the mucosal immune system in the female reproductive tract|title = Mucosal Immunology|editor = In: Ogra PL, Mestecky J, Lamm ME, Strober W, McGhee JR, Bienenstock J (eds.)|publisher = Elsevier|location = San Francisco|id = ISBN 0-12-491543-4}}</ref> dan respons imun bawaan.<ref>{{cite journal| last = Lang | first = TJ | year = 2004 | title = Estrogen as an immunomodulator | journal = Clin Immunol | volume = 113 | pages = 224–230 | id = PMID 15507385}}</ref><ref>{{cite journal | last = Moriyama | first = A | coauthors = Shimoya K, Ogata I ''et al.'' | year = 1999 | title = Secretory leukocyte protease inhibitor (SLPI) concentrations in cervical mucus of women with normal menstrual cycle | journal = Molecular Human Reproduction | volume = 5 | pages = 656–661 | id = PMID 10381821 | url = http://molehr.oxfordjournals.org/cgi/content/full/5/7/656}}</ref><ref>{{cite journal | last = Cutolo |first= M |coauthors= Sulli A, Capellino S, Villaggio B, Montagna P, Seriolo B, Straub RH| year = 2004 | title = Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity | journal = Lupus | volume = 13 | pages = 635–638 | id = PMID 15485092}}</ref><ref>{{cite journal | last = King | first = AE | coauthors = Critchley HOD, Kelly RW | year = 2000 | title = Presence of secretory leukocyte protease inhibitor in human endometrium and first trimester decidua suggests an antibacterial role | journal = Molecular Human Reproduction | volume = 6 | pages = 191–196 | id = PMID 10655462 | url = http://molehr.oxfordjournals.org/cgi/content/full/6/2/191}}</ref> Beberapa penyakit autoimun seperti [[lupus erythematosus]] sering menyerang wanita, dan mulainya serangan sering dengan [[pubertas]]. Sebaliknya, hormon seks pria seperti [[testosteron]] tampak menekan sistem kekebalanimun.<ref>{{cite journal | last = Fimmel | fist = S | coauthors = Zouboulis CC | year = 2005 | title = Influence of physiological androgen levels on wound healing and immune status in men | journal = Aging Male | volume = 8 | pages = 166–174 | id = PMID 16390741}}</ref>
 
=== Vitamin D ===
Saat suatu sel T menjumpai [[patogen]] asing, pada beberapa kasus melibatkan [[reseptor vitamin D]]. Hal ini pada dasarnya merupakan alat pensinyalan yang memungkinkan sel T untuk berikatan dengan bentuk aktif vitamin D, suatu hormon steroid [[kalsitriol]]. Di sisi lain, sel T mengekspresikan CYP27B1, suatu enzim yang bertanggung jawab mengubah versi pra-hormon vitamin D, [[kalsidiol]], menjadi versi hormon steroid, [[kalsitriol]]. Setelah mengikat dengan kalsitriol, sel T dapat melakukan fungsi yang diinginkan. Sel-sel sistem kekebalanimun lainnya seperti sel dendritik, keratinosit, dan makrofag dikenal mengekspresikan CYP27B1 dan dengan demikian dapat mengaktifkan vitamin D kalsidiol.<ref>{{cite journal | vauthors = von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C | title = Vitamin D controls T cell antigen receptor signaling and activation of human T cells | journal = Nature Immunology | volume = 11 | issue = 4 | pages = 344–9 | date = Apr 2010 | pmid = 20208539 | doi = 10.1038/ni.1851 | url = http://www.nature.com/ni/journal/v11/n4/abs/ni.1851.html }}</ref><ref>{{cite journal | vauthors = Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, Butcher EC | title = DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27 | journal = Nature Immunology | volume = 8 | issue = 3 | pages = 285–93 | date = Mar 2007 | pmid = 17259988 | doi = 10.1038/ni1433 }}</ref>
 
Diperkirakan bahwa penurunan progresif kadar hormon seiring bertambahnya usia juga menjadi salah satu faktor yang mengakibatkan pelemahan respons imun pada individu yang menua.<ref>{{cite journal | vauthors = Hertoghe T | title = The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies? | journal = Annals of the New York Academy of Sciences | volume = 1057 | issue = 1 | pages = 448–65 | date = Dec 2005 | pmid = 16399912 | doi = 10.1196/annals.1322.035 | bibcode = 2005NYASA1057..448H }}</ref> Penurunan fungsi kekebalan yang sehubungan dengan usia juga terkait dengan penurunan kadar vitamin D pada lansia. Seiring bertambahnya usia, ada dua hal yang secara negatif memengaruhi kadar vitamin D mereka. Pertama, mereka yang tinggal di dalam rumah akan lebih menurun tingkat aktivitasnya. Mereka mendapat lebih sedikit sinar matahari dan karenanya menghasilkan lebih sedikit [[kolekalsiferol]] melalui radiasi [[ultraungu]] B. Kedua, seiring bertambahnya usia, kulit menjadi berkurang kemampuannya memproduksi vitamin D.<ref>{{cite journal | vauthors = Mosekilde L | title = Vitamin D and the elderly | journal = Clinical Endocrinology | volume = 62 | issue = 3 | pages = 265–81 | date = Mar 2005 | pmid = 15730407 | doi = 10.1111/j.1365-2265.2005.02226.x }}</ref>
 
=== Tidur dan istirahat ===
Sistem kekebalanimun bertambah dengan tidur dan beristirahat,<ref>{{cite journal | last = Lange | first = T | coauthors = Perras B, Fehm HL, Born J | year = 2003 | title = Sleep Enhances the Human Antibody response to Hepatitis A Vaccination | url= http://www.psychosomaticmedicine.org/cgi/content/full/65/5/831 |journal = Psychosomatic Medicine | volume = 65 | pages = 831–835| id= PMID 14508028}}</ref> sebaliknya kurang tidur dapat merusak fungsi kekebalan tubuh.<ref>{{cite journal | vauthors = Bryant PA, Trinder J, Curtis N | title = Sick and tired: Does sleep have a vital role in the immune system? | journal = Nature Reviews. Immunology | volume = 4 | issue = 6 | pages = 457–67 | date = Jun 2004 | pmid = 15173834 | doi = 10.1038/nri1369 }}</ref> Putaran umpan balik melibatkan sitokin seperti interleukin-1 dan TNF alfa yang diproduksi sebagai respons terhadap infeksi, tampaknya juga berperan dalam pengaturan [[tidur non-REM]] (''non-rapid eye movement'').<ref>{{cite journal | vauthors = Krueger JM, Majde JA | title = Humoral links between sleep and the immune system: research issues | journal = Annals of the New York Academy of Sciences | volume = 992 | issue = 1 | pages = 9–20 | date = Mei 2003 | pmid = 12794042 | doi = 10.1111/j.1749-6632.2003.tb03133.x | bibcode = 2003NYASA.992....9K }}</ref> Dengan demikian respons imun terhadap infeksi dapat menyebabkan perubahan pada siklus tidur, termasuk peningkatan [[tidur gelombang lambat]] relatif terhadap [[tidur REM]].<ref>{{cite journal | vauthors = Majde JA, Krueger JM | title = Links between the innate immune system and sleep | journal = The Journal of Allergy and Clinical Immunology | volume = 116 | issue = 6 | pages = 1188–98 | date = Dec 2005 | pmid = 16337444 | doi = 10.1016/j.jaci.2005.08.005 }}</ref>
 
=== Nutrisi dan diet ===
Baris 141:
=== Perbaikan dan regenerasi ===
 
Sistem kekebalanimun tubuh, khususnya sistem kekebalanimun bawaan, memainkan peran yang menentukan dalam perbaikan jaringan setelah cedera.<ref>{{Cite journal|last=Park|first=Julie E.|last2=Barbul|first2=Adrian|date=2004-05-01|title=Understanding the role of immune regulation in wound healing|url=http://www.americanjournalofsurgery.com/article/S0002-9610(03)00296-4/fulltext|journal=The American Journal of Surgery|language=English|volume=187|issue=5|pages=S11–S16|doi=10.1016/s0002-9610(03)00296-4|issn=0002-9610|pmid=15147986}}</ref><ref>{{Cite journal|last=Burzyn|first=Dalia|last2=Kuswanto|first2=Wilson|last3=Kolodin|first3=Dmitriy|last4=Shadrach|first4=Jennifer L.|last5=Cerletti|first5=Massimiliano|last6=Jang|first6=Young|last7=Sefik|first7=Esen|last8=Tan|first8=Tze Guan|last9=Wagers|first9=Amy J.|date=2013-12-05|title=A Special Population of Regulatory T Cells Potentiates Muscle Repair|url=http://linkinghub.elsevier.com/retrieve/pii/S009286741301413X|journal=Cell|language=English|volume=155|issue=6|pages=1282–1295|doi=10.1016/j.cell.2013.10.054|issn=0092-8674|pmc=3894749|pmid=24315098}}</ref><ref>{{Cite journal|last=Leoni|first=G.|last2=Neumann|first2=P.-A.|last3=Sumagin|first3=R.|last4=Denning|first4=T. L.|last5=Nusrat|first5=A.|date=September 2015|title=Wound repair: role of immune–epithelial interactions|url=http://www.nature.com/mi/journal/v8/n5/full/mi201563a.html|journal=Mucosal Immunology|language=en|volume=8|issue=5|pages=959–968|doi=10.1038/mi.2015.63|issn=1933-0219|pmc=4916915|pmid=26174765}}</ref><ref>{{Cite journal|last=Wynn|first=Thomas A.|last2=Vannella|first2=Kevin M.|date=2016-03-15|title=Macrophages in Tissue Repair, Regeneration, and Fibrosis|url=http://linkinghub.elsevier.com/retrieve/pii/S107476131630053X|journal=Immunity|language=English|volume=44|issue=3|pages=450–462|doi=10.1016/j.immuni.2016.02.015|issn=1074-7613|pmc=4794754|pmid=26982353}}</ref><ref name=":0">{{Cite journal|last=Laurent|first=Paôline|last2=Jolivel|first2=Valérie|last3=Manicki|first3=Pauline|last4=Chiu|first4=Lynn|last5=Contin-Bordes|first5=Cécile|last6=Truchetet|first6=Marie-Elise|last7=Pradeu|first7=Thomas|date=2017|title=Immune-Mediated Repair: A Matter of Plasticity|url=http://journal.frontiersin.org/article/10.3389/fimmu.2017.00454/full#B9|journal=Frontiers in Immunology|language=English|volume=8|doi=10.3389/fimmu.2017.00454|issn=1664-3224|pmc=5403426|pmid=28484454}}</ref> Komponen kunci termasuk makrofag dan [[neutrofil]], juga komponen seluler lainnya termasuk [[Sel T gamma delta|sel T γδ]], [[sel limfoid bawaan]] (ILC), dan sel T regulator (Treg). Makrofag memainkan peran dominan dalam pemulihan homeostasis jaringan dengan membersihkan pecahan komponen seluler (debris sel), renovasi matriks ekstraseluler (''extracellular matrix'', ECM), dan penyintesisan berbagai sitokin dan faktor pertumbuhan.<ref>{{Cite journal|last=Julier|first=Ziad|last2=Park|first2=Anthony J.|last3=Briquez|first3=Priscilla S.|last4=Martino|first4=Mikaël M.|date=2017-04-15|title=Promoting tissue regeneration by modulating the immune system|url=http://www.sciencedirect.com/science/article/pii/S1742706117300661|journal=Acta Biomaterialia|volume=53|pages=13–28|doi=10.1016/j.actbio.2017.01.056|issn=1742-7061}}</ref> Dalam konteks penyembuhan jaringan, sel T γδ epitel dendritik (''dendritic epithelial γδT cell'', DETC) merupakan bagian sel yang sudah dikarakterisasi dengan baik. DETC memiliki morfologi seperti sel dendritik pada kulit tikus, dan mereka merespons dalam beberapa jam terhadap kerusakan jaringan kulit dengan mengeluarkan kemokin dan TNF-α untuk menarik makrofag. Selain itu, DETC mempercepat perbaikan jaringan dengan mensekresi faktor pertumbuhan dan sitokin seperti IGF-1, KGF-1 (FGF-7), KGF-2 (FGF-10), IL-22, dan IL-17A.<ref>{{Cite journal|last=Ramirez|first=Kevin|last2=Witherden|first2=Deborah A.|last3=Havran|first3=Wendy L.|date=2015-07-01|title=All hands on DE(T)C: Epithelial-resident γδ T cells respond to tissue injury|url=http://www.sciencedirect.com/science/article/pii/S0008874915000891|journal=Cellular Immunology|series=Gamma delta T cells: 30 years post-discovery|volume=296|issue=1|pages=57–61|doi=10.1016/j.cellimm.2015.04.003|issn=0008-8749|pmc=PMC4466205|pmid=25958272}}</ref> Plastisitas sel-sel imun dan keseimbangan antara sinyal pro-inflamasi dan anti-inflamasi merupakan aspek penting dari perbaikan jaringan yang efisien.<ref name=":0" />
 
== Gangguan pada imunitas ==
Sistem kekebalanimun merupakan struktur yang luar biasa efektif dalam hal spesifisitas, indusibilitas, dan adaptasi. Namun, kegagalan pertahanan bisa juga terjadi dan dibagi menjadi tiga kelompok besar: [[imunodefisiensi]], autoimunitas, dan hipersensitivitas.<ref>{{Cite journal|last=Giardino|first=Giuliana|last2=Gallo|first2=Vera|last3=Prencipe|first3=Rosaria|last4=Gaudino|first4=Giovanni|last5=Romano|first5=Roberta|last6=De Cataldis|first6=Marco|last7=Lorello|first7=Paola|last8=Palamaro|first8=Loredana|last9=Di Giacomo|first9=Chiara|date=2016|title=Unbalanced Immune System: Immunodeficiencies and Autoimmunity|url=https://www.ncbi.nlm.nih.gov/pubmed/27766253|journal=Frontiers in Pediatrics|volume=4|pages=107|doi=10.3389/fped.2016.00107|issn=2296-2360|pmc=PMC5052255|pmid=27766253}}</ref><ref>{{Cite journal|last=Weiss|first=R. B.|date=1992-10|title=Hypersensitivity reactions|url=https://www.ncbi.nlm.nih.gov/pubmed/1384149|journal=Seminars in Oncology|volume=19|issue=5|pages=458–477|issn=0093-7754|pmid=1384149}}</ref>
 
=== Imunodefisiensi ===
[[Imunodefisiensi]] terjadi ketika satu atau lebih komponen sistem kekebalanimun tidak aktif. Kemampuan sistem kekebalanimun untuk merespons patogen berkurang pada anak-anak dan orang tua, pada kasus orang tua disebabkan oleh [[imunosenesens]].<ref>{{cite journal |author=Aw D, Silva A, Palmer D |title=Immunosenescence: emerging challenges for an ageing population |journal=Immunology |volume=120 |issue=4 |pages=435–446 |year=2007 |pmid=17313487}}</ref><ref name="nutrition">{{cite journal| last = Chandra | first = RK| title = Nutrition and the immune system: an introduction | journal = American Journal of Clinical Nutrition | volume = Vol 66 | pages = 460S-463S | date = 1997 | id = PMID 9250133 |url = http://www.ajcn.org/cgi/content/abstract/66/2/460S}}</ref> Di negara-negara berkembang, penyebab melemahnya sistem kekebalanimun yaitu [[obesitas]], [[penyalahgunaan alkohol]], dan penggunaan obat.<ref name="nutrition" /> Namun, [[malnutrisi]] adalah penyebab paling umum yang menyebabkan imunodefisiensi di negara berkembang.<ref name="nutrition" /> Diet dengan protein yang tidak mencukupi dikaitkan dengan gangguan imunitas seluler, aktivitas komplemen, fungsi fagosit, konsentrasi antibodi [[Antibodi A|IgA]], dan produksi [[sitokin]]. Selain itu, ketiadaan [[timus]] pada usia dini melalui mutasi genetik atau pengangkatan melalui operasi mengakibatkan imunodefisiensi yang parah dan kerentanan tinggi terhadap infeksi.<ref>{{cite journal | vauthors = Miller JF | title = The discovery of thymus function and of thymus-derived lymphocytes | journal = Immunological Reviews | volume = 185 | issue = 1 | pages = 7–14 | date = Jul 2002 | pmid = 12190917 | doi = 10.1034/j.1600-065X.2002.18502.x }}</ref>
 
Imunodefisiensi juga bisa muncul akibat faktor turunan atau perolehan (didapat). [[Penyakit granuloma kronik|Penyakit granuloma kronis]], yaitu penyakit dengan rendahnya kemampuan [[fagosit]] untuk menghancurkan patogen, adalah contoh dari imunodefisiensi turunan. Sementara itu, [[AIDS]] dan beberapa jenis [[kanker]] merupakan contoh imunodefisiensi dapatan.<ref>{{cite journal | author = Joos L, Tamm M | title = Breakdown of pulmonary host defense in the immunocompromised host: cancer chemotherapy | url=http://pats.atsjournals.org/cgi/content/full/2/5/445 | journal = Proc Am Thorac Soc | volume = 2 | issue = 5 | pages = 445-8 | year = 2005 | id = PMID 16322598}}</ref><ref>{{cite journal | author = Copeland K, Heeney J | title = T helper cell activation and human retroviral pathogenesis | url=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=239461&blobtype=pdf | journal = Microbiol Rev | volume = 60 | issue = 4 | pages = 722-42 | year = 1996 | id = PMID 8987361}}</ref>
 
=== Autoimunitas ===
Autoimunitas adalah respons imun terlalu aktif termasuk fungsi imun yang tidak berfungsi baik sehingga berakhir pada gangguan [[autoimunitas|autoimun]]. Sistem kekebalanimun tidak mampu membedakan dengan tepat antara ''self'' dan ''non-self'', sehingga dapat menyerang bagian dari tubuh. Pada keadaan kondisi yang normal, banyak sel T dan antibodi bereaksi dengan peptida ''self''.<ref>{{cite journal | author = Miller J | title = Self-nonself discrimination and tolerance in T and B lymphocytes | journal = Immunol Res | volume = 12 | issue = 2 | pages = 115-30 | year = 1993 | id = PMID 8254222}}</ref> Terdapat sel khusus (terletak di timus dan [[sumsum tulang]]) yang menyajikan limfosit muda dengan antigen ''self'' yang dihasilkan pada tubuh dan untuk membunuh sel yang dianggap antigen ''self'', akhirnya mencegah autoimunitas.<ref name=Sproul/> Beberapa contoh penyakit autoimun yaitu [[rheumatoid arthritis|artritis rematoid]], [[diabetes melitus tipe 1]], [[Tiroiditis Hashimoto|penyakit Hashimoto]], dan [[lupus erythematosus|lupus eritematosus sistemik]].<ref>{{Cite journal|last=Cho|first=Judy H.|last2=Feldman|first2=Marc|date=2015-7|title=Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies|url=https://www.ncbi.nlm.nih.gov/pubmed/26121193|journal=Nature Medicine|volume=21|issue=7|pages=730–738|doi=10.1038/nm.3897|issn=1546-170X|pmc=PMC5716342|pmid=26121193}}</ref>
 
=== Hipersensitivitas ===
Baris 159:
== Manipulasi pada kedokteran ==
[[Berkas:Dexamethasone structure.svg|jmpl|ka|200px|[[Obat imunosupresif]] [[deksametason]]]]
Respons imun dapat dimanipulasi untuk menekan respons yang tidak diinginkan akibat [[autoimunitas]], [[alergi]], atau penolakan [[Transplantasi organ|transplantasi]]. Manipulasi juga dapat dilakukan untuk merangsang respons perlindungan terhadap patogen yang sebagian besar menghindari sistem kekebalanimun (lihat [[imunisasi]]) atau kanker.
 
=== Obat imunosupresif ===
Baris 167:
 
=== Imunostimulan ===
Pada pengobatan tradisional, beberapa obat-obatan tradisional dipercaya dapat menstimulasi imunitas, seperti [[ekinasea]], [[akar manis]], [[ginseng]], [[astragalus]], [[saga pohon|saga]], [[bawang putih]], [[sangitan]], [[jamur]] [[shiitake]], jamur [[lingzhi]], [[hisop]], dan [[madu]]. Penelitian telah menunjukan bahwa bahan-bahan tersebut dapat menstimulasi sistem kekebalanimun,<ref>{{cite journal | last = Spelman | first = K | coauthors = Burns J, Nichols D, Winters N, Ottersberg S, Tenborg M | year = 2006 | title = Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators | journal = Alternative Medicine reviews | pages = 128–150 | id = PMID 16813462}}</ref><ref>{{cite journal | last = Brush | first = J | coauthors = Mendenhall E, Guggenheim A, Chan T, Connelly E, Soumyanth A, Buresh R, Barrett R, Zwickey H | year = 2006 | title = The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD69 expression and immune cell activation in humans | journal = Phytotherapy Research | volume = 20 | pages = 687–695 | id = PMID 16807880}}</ref> walaupun cara kerja mereka belum sepenuhnya dimengerti.
 
=== Imunologi tumor ===
[[Berkas:Macs killing cancer cell.jpg|jmpl|ka|250px|Makrofag telah mengidentifikasi sebuah sel kanker (berukuran besar dan runcing). Setelah membran antarsel menyatu, makrofag (sel putih yang lebih kecil) menyuntikkan toksin yang akan membunuh sel tumor. [[Imunoterapi]] untuk pengobatan [[kanker]] merupakan salah satu bidang yang saat ini sedang aktif diteliti dalam penelitian medis.<ref>{{cite journal | author = Morgan R ''et al''. | title = Cancer regression in patients after transfer of genetically engineered lymphocytes | journal = [[Science (journal)|Science]] | year = 2006 | volume = 314 | pages = 126–129 | id = PMID 16946036}}</ref>]]
Peran penting sistem kekebalanimun lainnya yaitu untuk menemukan dan menghancurkan [[tumor]] melalui mekanisme yang disebut pengawasan imun (''immune surveillance''). Sel tumor mengekspresikan antigen yang tidak ditemukan pada sel normal. Oleh sistem kekebalanimun, antigen tersebut dianggap sebagai antigen asing dan keberadaannya mendorong sel imun untuk menyerang sel tumor tersebut. Antigen yang diekspresikan oleh tumor dapat berasal dari berbagai sumber,<ref name = anderson>{{cite journal | author = Andersen MH, Schrama D, Thor Straten P, Becker JC | title = Cytotoxic T cells | journal = J Invest Dermatol | volume = 126 | issue = 1 | pages = 32–41 | year = 2006 | id = PMID 16417215}}</ref> misal dari virus [[onkogenik]] seperti [[papillomavirus]] yang menyebabkan [[kanker leher rahim]],<ref>{{cite journal | author = Boon T, van der Bruggen P | title = Human tumor antigens recognized by T lymphocytes | journal = J Exp Med | volume = 183 | issue = | pages = 725–29 | year = 1996 | id = PMID 8642276 }}</ref> sementara lainnya adalah protein organisme itu sendiri yang diekspresikan pada tingkat tinggi dibanding tingkat pada sel normal sehat. Salah satu contoh yaitu [[enzim]] [[tirosinase]] yang ketika diekspresikan pada tingkat tinggi, mengubah beberapa sel kulit (seperti [[melanosit]]) menjadi tumor yang disebut [[melanoma]].<ref>{{cite journal | author = Castelli C, Rivoltini L, Andreola G, Carrabba M, Renkvist N, Parmiani G | title = T cell recognition of melanoma-associated antigens | journal = J Cell Physiol | volume = 182 | issue = | pages = 323–31 | year = 2000 | id = PMID 10653598 }}</ref><ref name = romera>{{cite journal | author = Romero P, Cerottini JC, Speiser DE | title = The human T cell response to melanoma antigens | journal = Adv Immunol. | volume = 92 | issue = | pages = 187–224 | year = 2006 | id = PMID 17145305}}</ref> Sumber antigen tumor yang ketiga adalah protein yang secara normal penting untuk mengatur pertumbuhan dan daya hidup sel, tetapi protein ini mengalami mutasi menjadi kanker dan lalu menimbulkan molekul-molekul yang disebut [[onkogen]].<ref name = anderson/><ref name = guevara>{{cite journal | author = Guevara-Patino JA, Turk MJ, Wolchok JD, Houghton AN | title = Immunity to cancer through immune recognition of altered self: studies with melanoma | journal = Adv Cancer Res. | volume = 90 | issue = | pages = 157–77 | year = 2003 | id = PMID 14710950}}</ref><ref>{{cite journal | author = Renkvist N, Castelli C, Robbins PF, Parmiani G | title = A listing of human tumor antigens recognized by T cells | journal = Cancer Immunol Immunother | volume = 50 | issue = | pages = 3–15 | year = 2001 | id = PMID 11315507}}</ref>
 
Respons utama sistem kekebalanimun terhadap tumor yaitu untuk menghancurkan sel abnormal menggunakan sel T sitotoksik, kadang-kadang dengan bantuan sel T pembantu.<ref name = romera/><ref>{{cite journal | author = Gerloni M, Zanetti M. | title = CD4 T cells in tumor immunity | journal = . Springer Semin Immunopathol | volume = 27 | issue = 1 | pages = 37–48 | year = 2005 | id = PMID 15965712 }}</ref> Antigen tumor disajikan pada molekul MHC kelas I dengan cara yang serupa dengan antigen virus, sehingga sel T sitotoksik dapat mengenali sel tumor sebagai sel abnormal.<ref name = seliger>{{cite journal | author = Seliger B, Ritz U, Ferrone S | title = Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation | journal = Int J Cancer | volume = 118 | issue = 1 | pages = 129–38| year = 2006 | id = PMID 16003759 }}</ref> Sel NK juga membunuh sel tumor dengan cara yang mirip, terutama jika sel tumor memiliki molekul MHC kelas I lebih sedikit pada permukaan daripada keadaan normal; hal ini merupakan fenomena umum pada tumor.<ref>{{cite journal | author = Hayakawa Y, Smyth MJ. | title = Innate immune recognition and suppression of tumors | journal = Adv Cancer Res | volume = 95 | issue = | pages = 293–322 | year = 2006 | id = PMID 16860661 }}</ref> Terkadang antibodi dihasilkan untuk melawan sel tumor dan menghancurkannya melalui kerja sama dengan [[sistem komplemen]].<ref name = guevara/>
 
Makrofag memiliki peran ganda dalam karsinogenesis (proses perkembangan kanker). Peran tersebut yaitu dengan cara melawan aktivitas sitotoksik sel imun terhadap sel kanker atau dengan meningkatkan respons antitumor.<ref>{{Cite journal|last=Poh|first=Ashleigh R.|last2=Ernst|first2=Matthias|date=2018|title=Targeting Macrophages in Cancer: From Bench to Bedside|url=https://www.ncbi.nlm.nih.gov/pubmed/29594035|journal=Frontiers in Oncology|volume=8|pages=49|doi=10.3389/fonc.2018.00049|issn=2234-943X|pmc=PMC5858529|pmid=29594035}}</ref> Makrofag terkait tumor (''tumor-associated macrophage'', TAM) dapat menghasilkan [[sitokin]] dan faktor pertumbuhan seperti TNF-alfa yang dapat memelihara perkembangan tumor atau mendorong plastisitas sifat seperti sel punca.<ref name=":1" /> Sementara itu, sel tumor yang terus menerus terpapar keadaan [[hipoksia]] relatif ditambah dengan sitokin dan TNF-alfa menyebabkan turunnya produksi protein yang menghalangi [[metastasis]] sehingga mempercepat penyebaran sel kanker.<ref name=":1" />
 
Beberapa tumor menghindari sistem kekebalanimun dan terus berkembang sampai menjadi kanker.<ref name=":1">{{Cite journal|last=Syn|first=Nicholas L|last2=Teng|first2=Michele W L|last3=Mok|first3=Tony S K|last4=Soo|first4=Ross A|title=De-novo and acquired resistance to immune checkpoint targeting|url=http://linkinghub.elsevier.com/retrieve/pii/S1470204517306071|journal=The Lancet Oncology|language=en|volume=18|issue=12|pages=e731–e741|doi=10.1016/s1470-2045(17)30607-1|year=2017}}</ref><ref name = selig>{{cite journal | author = Seliger B | title = Strategies of tumor immune evasion | journal = BioDrugs | volume = 19 | issue = 6 | pages = 347–54 | year = 2005 | id = PMID 16392887 }}</ref> Sel tumor sering memiliki jumlah molekul MHC kelas I yang lebih rendah, sehingga dapat menghindari deteksi oleh sel T sitotoksik.<ref name = seliger/> Beberapa sel tumor juga mengeluarkan produk yang mencegah respons imun; contohnya dengan menyekresikan sitokin [[TGF beta|TGF-β]], yang menekan aktivitas makrofag dan [[limfosit]].<ref>{{cite journal | author = Frumento G, Piazza T, Di Carlo E, Ferrini S | title = Targeting tumor-related immunosuppression for cancer immunotherapy | journal = Endocr Metab Immune Disord Drug Targets | volume = 6 | issue = 3 | pages = 233–7 | year = 2006 | id = PMID 17017974}}</ref> Selain itu, [[toleransi imunologis]] dapat berkembang terhadap antigen tumor sehingga sistem kekebalanimun tidak lagi menyerang sel tumor.<ref name = selig/>
 
=== Memori imunologi dan vaksinasi ===
Ketika limfosit telah aktif dan mulai melakukan replikasi, beberapa dari keturunan mereka menjadi sel memori berumur panjang. Sel memori akan mengingat setiap patogen yang pernah ditemui secara spesifik dan dapat melakukan respons lebih kuat jika [[patogen]] terdeteksi kembali. Hal ini disebut "adaptif" karena terjadi sepanjang hidup suatu individu dalam beradaptasi pada infeksi patogen dan menyiapkan sistem kekebalanimun untuk tantangan berikutnya.<ref>{{Cite journal|last=MacLeod|first=Megan K. L.|last2=Kappler|first2=John W.|last3=Marrack|first3=Philippa|date=2010-5|title=Memory CD4 T cells: generation, reactivation and re-assignment|url=https://www.ncbi.nlm.nih.gov/pubmed/20331469|journal=Immunology|volume=130|issue=1|pages=10–15|doi=10.1111/j.1365-2567.2010.03260.x|issn=1365-2567|pmc=PMC2855788|pmid=20331469}}</ref>
 
[[Berkas:Immune response2.svg|jmpl|kiri|360px|Lama waktu respons imun dimulai dengan pertemuan dengan patogen awal (atau vaksinansi awal), dan mendorong pembentukan dan penjagaan memori imunologi aktif.]]
 
Memori aktif jangka panjang didapat setelah terjadinya infeksi melalui proses pengaktifan sel B dan sel T. Imunitas aktif dapat juga dibuat melalui [[vaksinasi]]. Prinsip di balik vaksinasi (juga disebut [[imunisasi]]) yaitu untuk memperkenalkan [[antigen]] dari patogen untuk menstimulasi sistem kekebalanimun dan mengembangkan imunitas spesifik melawan patogen tanpa menyebabkan penyakit yang berkaitan dengan organisme tersebut.<ref name=Alberts/>{{rp|1311}} Induksi respons imun yang disengaja ini berhasil karena memanfaatkan spesifisitas alami sistem kekebalanimun. Penyakit infeksi masih menjadi salah satu penyebab utama kematian pada populasi manusia, sehingga vaksinasi muncul sebagai manipulasi sistem kekebalanimun manusia yang paling efektif.<ref name=Jan/>{{rp|33}}
 
Kebanyakan vaksin virus berasal dari virus yang dilemahkan, sedangkan banyak vaksin bakteri berasal dari komponen aseluler dari mikroorganisme, termasuk komponen [[toksin]] yang tidak berbahaya. Karena banyak antigen berasal dari vaksin aseluler tidak menginduksi respons adaptf dengan kuat, maka kebanyakan vaksin bakteri disediakan dengan penambahan [[adjuvan imunologik|adjuvan]] yang mengaktifkan [[sel penyaji antigen]] pada [[Sistem kekebalan bawaan|sistem kekebalanimun bawaan]] dan memaksimalkan [[imunogenisitas]].<ref>{{cite journal | author = Singh M, O'Hagan D | title = Advances in vaccine adjuvants | journal = Nat Biotechnol | volume = 17 | issue = 11 | pages = 1075–81 | year = 1999 | id = PMID 10545912}}</ref>
 
=== Prediksi imunogenisitas ===
Baris 197:
== Evolusi dan mekanisme lainnya ==
 
=== Evolusi sistem kekebalanimun ===
[[Sistem kekebalan adaptif|Sistem kekebalanimun adaptif]] dengan berbagai komponennya tampaknya muncul pada [[vertebrata]] pertama, sementara [[invertebrata]] tidak menghasilkan limfosit atau respons humoral berupa [[antibodi]].<ref name="Beck">{{cite journal|last=Beck|first=Gregory|date=November 1996|title=Immunity and the Invertebrates|url=http://www.scs.carleton.ca/~soma/biosec/readings/sharkimmu-sciam-Nov1996.pdf|format=[[PDF]]|journal=Scientific American|pages=60–66|accessdate=2007-01-01|coauthors=Gail S. Habicht}}</ref> Namun, banyak spesies yang memanfaatkan mekanisme-mekanisme yang agaknya merupakan pendahulu imunitas pada vertebrata. Sistem kekebalanimun pun dimiliki oleh organisme yang paling sederhana, misalnya bakteri menggunakan mekanisme pertahanan unik yang disebut [[sistem modifikasi restriksi]] untuk melindungi diri dari patogen virus yang disebut [[bakteriofag]].<ref>{{cite journal | author = Bickle T, Krüger D | title = Biology of DNA restriction | url=http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=372918&blobtype=pdf | journal = Microbiol Rev | volume = 57 | issue = 2 | pages = 434-50 | year = 1993 | id = PMID 8336674}}</ref>
 
Prokariota juga memiliki imunitas adaptif melalui sistem yang menggunakan urutan [[CRISPR]] untuk mempertahankan fragmen genom dari [[bakteriofag]] yang pernah ditemui sebelumnya, yang memungkinkan prokariota menghalangi replikasi virus melalui mekanisme sejenis [[interferensi RNA]].<ref>{{cite journal | vauthors = Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P | title = CRISPR provides acquired resistance against viruses in prokaryotes | journal = Science | volume = 315 | issue = 5819 | pages = 1709–12 | date = Mar 2007 | pmid = 17379808 | doi = 10.1126/science.1138140 | bibcode = 2007Sci...315.1709B }}</ref><ref>{{cite journal | vauthors = Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J | title = Small CRISPR RNAs guide antiviral defense in prokaryotes | journal = Science | volume = 321 | issue = 5891 | pages = 960–4 | date = Aug 2008 | pmid = 18703739 | pmc = 5898235 | doi = 10.1126/science.1159689 | bibcode = 2008Sci...321..960B }}</ref> <!--Prokariota juga memiliki mekanisme pertahanan lain.<ref>{{Cite journal|last=Hille|first=Frank|last2=Charpentier|first2=Emmanuelle|date=2016|title=CRISPR-Cas: biology, mechanisms and relevance|url=http://rstb.royalsocietypublishing.org/content/371/1707/20150496|journal=Philosophical Transactions of the Royal Society B|volume=371|issue=1707|pages=20150496|via=|doi=10.1098/rstb.2015.0496|pmid=27672148|pmc=5052741}}</ref><ref>{{Cite journal|last=Koonin|first=Eugene V.|date=2017|title=Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence|journal=Biology Direct|volume=12|issue=1|pages=5|doi=10.1186/s13062-017-0177-2|issn=1745-6150|pmc=5303251|pmid=28187792}}</ref>--> Sistem kekebalanimun yang bersifat menyerang juga terdapat pada eukariota uniseluler, tetapi belum banyak penelitian tentang peranan sistem tersebut dalam pertahanan.<ref>{{cite journal | vauthors = Bayne CJ | year = 2003 | title = Origins and evolutionary relationships between the innate and adaptive arms of immune systems | url = | journal = Integr. Comp. Biol. | volume = 43 | issue = 2| pages = 293–299 | pmid = 21680436 | doi=10.1093/icb/43.2.293}}</ref>
 
[[Reseptor pengenal pola]] merupakan protein yang digunakan oleh hampir semua organisme untuk mengidentifikasi molekul yang terkait dengan patogen. [[Peptida antimikrobial]] yang disebut [[defensin]] adalah komponen evolusioner respons imun bawaan yang ditemukan pada semua jenis hewan dan tumbuhan, serta mewakili bentuk utama imunitas sistemik [[invertebrata]].<ref name="Beck" /> [[Sistem komplemen]] dan fagositik juga digunakan oleh hampir semua bentuk kehidupan invertebrata. [[Ribonuklease]] dan jalur interferensi RNA digunakan pada semua [[eukariot]]; keduanya diyakini memainkan peran pada respons imun terhadap virus.<ref>{{cite journal|author = Stram Y, Kuzntzova L.|title = Inhibition of viruses by RNA interference|journal = Virus Genes|volume = 32|issue = 3|pages = 299–306|year = 2006|id = PMID 16732482}}</ref>
Baris 207:
 
=== Imunitas adaptif alternatif ===
Evolusi sistem kekebalanimun adaptif terjadi pada nenek moyang vertebrata berahang. Banyak molekul klasik pada sistem kekebalanimun adaptif (seperti antibodi dan [[reseptor sel T]]) hanya dimiliki vertebrata berahang. Namun, molekul berbeda yang berasal dari [[limfosit]] ditemukan pada [[agnatha|vertebrata tak berahang]] primitif, seperti ikan [[lamprey]] dan [[remang]]. Hewan tersebut memiliki sejumlah molekul disebut [[reseptor limfosit variabel]], mirip reseptor antigen pada vertebrata berahang, yang dihasilkan dari segelintir [[gen]] (satu atau dua). Molekul tersebut dipercaya berikatan pada [[patogen]] dengan cara yang sama dengan antibodi dan dengan tingkat spesifisitas yang sama.<ref>{{cite journal|author=M.N. Alder, I.B. Rogozin, L.M. Iyer, G.V. Glazko, M.D. Cooper, Z. Pancer|year=2005|title=Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate|journal=Science|volume=310|issue=5756|pages=1970–1973|id=PMID 16373579}}</ref>
 
=== Manipulasi oleh patogen ===
Keberhasilan patogen bergantung pada kemampuannya untuk menghindar dari respons imun. Oleh karena itu, patogen telah mengembangkan beberapa metode yang menyebabkan mereka dapat menginfeksi inang, sementara patogen menghindari deteksi dan kehancuran akibat sistem kekebalanimun.<ref name=Finlay>{{cite journal | author = Finlay B, McFadden G | title = Anti-immunology: evasion of the host immune system by bacterial and viral pathogens | journal = Cell | volume = 124 | issue = 4 | pages = 767-82 | year = 2006 | id = PMID 16497587}}</ref> Bakteri sering menembus penghalang fisik dengan mengeluarkan [[enzim]] yang bisa menghancurkan penghalang tersebut, contohnya dengan menggunakan [[sistem sekresi tipe II]].<ref>{{cite journal | author = Cianciotto NP.| title = Type II secretion: a protein secretion system for all seasons | journal = Trends Microbiol. | volume = 13 | issue = 12 | pages = 581-8 | year = 2005 | id = PMID 16216510}}</ref> Selain itu, patogen dapat menggunakan [[sistem sekresi tipe III]], yaitu mereka dapat memasukan tuba berongga pada sel inang, yang menyediakan saluran langsung untuk protein agar dapat bergerak dari patogen ke inang. Protein yang dikirim melalui tuba sering digunakan untuk membuat tidak aktif pertahanan tubuh.<ref>{{cite journal | author = Winstanley C, Hart CA| title = Type III secretion systems and pathogenicity islands | journal = J Med Microbiol. | volume = 50 | issue = 2 | pages = 116-26 | year = 2001 | id = PMID 11211218}}</ref>
 
Strategi menghindar digunakan oleh beberapa patogen untuk menghindari sistem kekebalanimun bawaan yaitu bersembunyi dalam sel inang (juga disebut [[patogenesis]] intraseluler). Dalam hal ini, patogen menghabiskan sebagian besar siklus hidupnya dalam sel inang yang dilindungi dari kontak langsung dengan sel imun, antibodi, dan sistem komplemen. Beberapa contoh patogen intraseluler termasuk virus, [[bakteri]] ''[[Salmonella]]'' yang terdapat pada makanan beracun, dan parasit [[eukariot]] yang menyebabkan [[malaria]] (''[[Plasmodium falciparum]]'') dan [[leismaniasis]] (''[[Leishmania|Leishmania spp.]]''). Bakteri lain, seperti ''[[Mycobacterium tuberculosis]]'', hidup di dalam kapsul pelindung yang mencegah [[lisis]] oleh sistem komplemen.<ref>{{cite journal | author = Finlay B, Falkow S | title = Common themes in microbial pathogenicity revisited | url=http://mmbr.asm.org/cgi/reprint/61/2/136.pdf | journal = Microbiol Mol Biol Rev | volume = 61 | issue = 2 | pages = 136-69 | year = 1997 | id = PMID 9184008}}</ref> Banyak patogen mengeluarkan senyawa yang melemahkan respons imun atau mengarahkan respons imun ke arah yang salah.<ref name=Finlay/> Beberapa bakteri membentuk [[biofilm]] untuk melindungi diri mereka dari sel dan protein sistem kekebalanimun. Biofilm dapat ditemui pada banyak infeksi, seperti infeksi ''[[Pseudomonas aeruginosa]]'' kronis dan ''[[Burkholderia cenocepacia]],'' yang merupakan penanda dari infeksi [[fibrosis sistik]].<ref>{{cite journal | author = Kobayashi H | title = Airway biofilms: implications for pathogenesis and therapy of respiratory tract infections | journal = Treat Respir Med | volume = 4 | issue = 4 | pages = 241-53 | year = 2005 | id = PMID 16086598}}</ref> Bakteri lain menghasilkan protein permukaan yang mengikat pada antibodi, mengubah mereka menjadi tidak efektif, contohnya ''[[Streptococcus]]'' (protein G), ''[[Staphylococcus aureus]]'' (protein A), dan ''[[Peptostreptococcus|Peptostreptococcus magnus]]'' (protein L).<ref>{{cite journal | author = Housden N, Harrison S, Roberts S, Beckingham J, Graille M, Stura E, Gore M | title = Immunoglobulin-binding domains: Protein L from Peptostreptococcus magnus | url=http://www.biochemsoctrans.org/bst/031/0716/0310716.pdf | journal = Biochem Soc Trans | volume = 31 | issue = Pt 3 | pages = 716-8 | year = 2003 | id = PMID 12773190}}</ref>
 
Mekanisme yang digunakan oleh virus untuk menghindari sistem kekebalanimun adaptif adalah lebih rumit. Pendekatan paling sederhana yaitu dengan cepat mengubah [[epitop]] yang tidak esensial ([[asam amino]] dan gula) pada permukaannya, sementara terus menyembunyikan epitop esensial. Proses ini dinamakan [[variasi antigenik]]. Contohnya yaitu HIV, yang bermutasi dengan cepat, sehingga protein pada [[virus#Struktur|selubung virus]] yang esensial untuk masuk pada sel target secara terus menerus berubah. Perubahan tersebut bisa jadi adalah sebab gagalnya vaksin yang diarahkan pada virus tersebut.<ref>{{cite journal | last = Burton | first = Dennis R. | coauthors = Robyn L. Stanfield and Ian A. Wilson | title = Antibody vs. HIV in a clash of evolutionary titans | journal =Proc Natl Acad Sci U S A.| volume = 102 | issue = 42 | pages = 14943-8 | year = 2005 | id = PMID 16219699}}</ref> Parasit ''[[Trypanosoma brucei]]'' menggunakan strategi yang serupa, selalu mengubah protein permukaan sehingga selangkah lebih maju dari respons antibodi.<ref>{{cite journal|date=Nov 2006|title=Switching trypanosome coats: what's in the wardrobe?|journal=Trends in Genetics|volume=22|issue=11|pages=614–20|doi=10.1016/j.tig.2006.08.003|pmid=16908087|vauthors=Taylor JE, Rudenko G}}</ref> Strategi lainnya yaitu menutup antigen dari molekul inang untuk menghindari deteksi oleh sistem kekebalanimun. Pada HIV, selubung yang menutupi virion dibentuk dari membran paling luar dari sel inang, membuat sistem kekebalanimun kesulitan untuk mengidentifikasikan mereka sebagai benda asing.<ref>{{cite journal | author = Cantin R, Methot S, Tremblay MJ.| title = Plunder and stowaways: incorporation of cellular proteins by enveloped viruses | journal = J Virol. | volume = 79 | issue = 11 | pages = 6577–87 | year = 2005 | id = PMID 15890896}}</ref>
 
== Lihat pula ==