Produk dot: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
LaninBot (bicara | kontrib)
k Perubahan kosmetik tanda baca
Baris 27:
 
=== Definisi menurut geometri ===
Dalam [[Ruang Euklides|ruang Euclidean]] , suatu [[vektor (spasial)|vektor Euclidean]] adalah sebuah objek geometri yang memiliki baik besaran (''magnitude'') dan [[arah (geometri)|arah]] (''direction''). Sebuah vektor dapat digambarkan seperti sebuah anak panah. Besarannya adalah panjangnya, sedangkan arahnya adalah yang ditunjuk oleh ujung panah. Besaran vektor '''A''' dilambangkan dengan <math>\|\mathbf{A}\|</math>. Produk skalar dua vektor Euclidean '''A''' dan '''B''' didefinisikan sebagai<ref name="Spiegel2009">{{cite book|author= M.R. Spiegel, S. Lipschutz, D. Spellman|first1=|title= Vector Analysis (Schaum’s Outlines)|edition= 2nd|year= 2009|publisher= McGraw Hill|isbn=978-0-07-161545-7}}</ref>
:<math>\mathbf A\cdot\mathbf B = \|\mathbf A\|\,\|\mathbf B\|\cos\theta,</math>
di mana θ adalah [[sudut]] di antara '''A''' dan '''B'''.
Baris 156:
===Inner product===
{{main|Inner product space}}
The inner product generalizes the dot product to [[vector space|abstract vector spaces]] over a [[field (mathematics)|field]] of [[scalar (mathematics)|scalars]], being either the field of [[real number]]s <math>\mathbb{R}</math> or the field of [[complex number]]s <math>\mathbb{C}</math>. It is usually denoted by <math>\langle\mathbf{a}\, , \mathbf{b}\rangle</math>.
 
The inner product of two vectors over the field of complex numbers is, in general, a complex number, and is [[Sesquilinear form|sesquilinear]] instead of bilinear. An inner product space is a [[normed vector space]], and the inner product of a vector with itself is real and positive-definite.
Baris 165:
This notion can be generalized to [[continuous function]]s: just as the inner product on vectors uses a sum over corresponding components, the inner product on functions is defined as an integral over some [[Interval (mathematics)|interval]] {{math|''a'' ≤ ''x'' ≤ ''b''}} (also denoted {{math|[''a'', ''b'']}}):<ref name="Lipschutz2009" />
 
:<math>\langle u , v \rangle = \int_a^b u(x)v(x)dx </math>
 
Generalized further to [[complex function]]s {{math|''ψ''(''x'')}} and {{math|''χ''(''x'')}}, by analogy with the complex inner product above, gives<ref name="Lipschutz2009" />
 
:<math>\langle \psi , \chi \rangle = \int_a^b \psi(x)\overline{\chi(x)}dx.</math>
 
===Weight function===