Produk dot: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tag: Suntingan perangkat seluler Suntingan peramban seluler
k Bot: Perubahan kosmetika
Baris 92:
#: <math>\mathbf{a}\cdot \mathbf{b} = \|\mathbf{a}\|\|\mathbf{b}\|\cos\theta = \|\mathbf{b}\|\|\mathbf{a}\|\cos\theta = \mathbf{b}\cdot\mathbf{a} </math>
# '''[[Distributif property|Distributif]] over vector addition:'''
#: <math> \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}. </math>
# '''[[bilinear form|Bilinear]]''':
#: <math> \mathbf{a} \cdot (r\mathbf{b} + \mathbf{c})
Baris 148:
:<math>\mathbf{a}\cdot \mathbf{b} = \sum{a_i \overline{b_i}} </math>
where <span style="text-decoration: overline">''b<sub>i</sub>''</span> is the [[complex conjugate]] of ''b<sub>i</sub>''. Then the scalar product of any vector with itself is a non-negative real number, and it is nonzero except for the zero vector. However this scalar product is thus [[sesquilinear]] rather than bilinear: it is [[conjugate linear]] and not linear in '''b''', and the scalar product is not symmetric, since
:<math> \mathbf{a} \cdot \mathbf{b} = \overline{\mathbf{b} \cdot \mathbf{a}}. </math>
The angle between two complex vectors is then given by
:<math>\cos\theta = \frac{\operatorname{Re}(\mathbf{a}\cdot\mathbf{b})}{\|\mathbf{a}\|\,\|\mathbf{b}\|}.</math>