Tabel periodik: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Genewiki1 (bicara | kontrib)
Updated a link
Menolak perubahan teks terakhir (oleh Genewiki1) dan mengembalikan revisi 13317816 oleh Bagas Chrisara
Baris 1:
{{pp-semi-indef}}
:''Lihat '''[[{{PAGENAME}}#Tabel periodik standar|tabel periodik standar]]''' di bawah.''
[[Berkas:Periodic table (polyatomic)-id.svg|jmpl|500px|Tabel periodik modern, dalam tata letak 18 kolom]]
'''Tabel periodik''' adalah tampilan [[unsur kimia|unsur-unsur kimia]] dalam bentuk tabel. Unsur-unsur tersebut disusun berdasarkan [[nomor atom]] (jumlah proton dalam inti atom), [[konfigurasi elektron]], dan keberulangan [[sifat kimia]]. Tabel juga terbagi menjadi empat [[Blok tabel periodik|blok]]: blok -s, -p, -d, dan -f. Secara umum, dalam satu periode (baris), di sebelah kiri bersifat logam, dan di sebelah kanan bersifat non-logam.
 
Baris pada tabel disebut [[Periode tabel periodik|periode]], sedangkan kolom disebut [[Golongan tabel periodik|golongan]]. Enam golongan (kolom) mempunyai nama selain nomor: contoh, unsur golongan 17 adalah [[halogen]], dan golongan 18 adalah [[gas mulia]]. Tabel periodik dapat digunakan untuk menurunkan hubungan antara sifat-sifat unsur, dan memperkirakan sifat unsur baru yang belum ditemukan atau disintesis. Tabel periodik memberikan kerangka kerja untuk melakukan analisis perilaku kimia, dan banyak digunakan dalam bidang kimia dan ilmu lainnya.
'''Tabel periodik unsur-unsur kimia''' adalah tampilan [[unsur kimia|unsur-unsur kimia]] dalam bentuk tabel. Unsur-unsur tersebut diatur berdasarkan struktur [[elektron]]nya sehingga [[sifat kimia]] unsur-unsur tersebut berubah-ubah secara teratur sepanjang tabel. Setiap [[unsur kimia|unsur]] didaftarkan berdasarkan [[nomor atom]] dan [[lambang kimia|lambang unsurnya]].
 
Meskipun ada para pendahulunya, tabel periodik [[Dmitri Mendeleev]] adalah yang paling dipercaya, dalam publikasinya, pada tahun 1869, sebagai tabel periodik yang pertama kali diakui secara luas. Ia mengembangkan tabelnya untuk menggambarkan tren periodik berdasarkan sifat-sifat unsur-unsur yang telah diketahui. Mendeleev juga memperkirakan beberapa sifat [[Unsur-unsur prediksi Mendeleev|unsur-unsur yang belum diketahui]] yang akan mengisi ruang kosong dalam tabel tersebut. Sebagian besar prediksinya terbukti benar ketika unsur-unsur tersebut terungkap di kemudian hari. Tabel periodik Mendeleev telah dikembangkan dan dilengkapi dengan [[Penemuan unsur kimia|penemuan atau sintesis unsur-unsur baru]] dan pengembangan model teoretis baru untuk menjelaskan perilaku kimia.
Tabel periodik standar memberikan informasi dasar mengenai suatu unsur. Ada juga [[{{PAGENAME}}#Tampilan lain|cara lain untuk menampilkan unsur-unsur kimia]] dengan memuat keterangan lebih atau dari persepektif yang berbeda.
 
Seluruh unsur dari nomor atom 1 ([[hidrogen]]) hingga 118 ([[oganesson]]) telah ditemukan atau disintesis, dengan penambahan terbaru ([[nihonium]], [[moscovium]], [[tennessine]], dan [[oganesson]]) yang dikonfirmasi oleh ''[[International Union of Pure and Applied Chemistry]]'' (IUPAC) pada tanggal 30 Desember 2015 dan secara resmi diberi nama pada tanggal 28 November 2016: mereka menyelesaikan tujuh baris pertama Tabel periodik.<ref name="BBC News">{{cite web|url=http://www.bbc.co.uk/news/science-environment-35220823|title=Chemistry: Four elements added to periodic table|work=BBC News|date=January 4, 2016}}</ref><ref name="St. Fleur">{{cite web |first= Nicholas |last=St. Fleur |url=https://www.nytimes.com/2016/12/01/science/periodic-table-new-elements.html?rref=collection%2Fsectioncollection%2Fscience&action=click&contentCollection=science&region=rank&module=package&version=highlights&contentPlacement=1&pgtype=sectionfront|title=Four New Names Officially Added to the Periodic Table of Elements |work=New York Times|date=December 1, 2016}}</ref> Sembilan puluh empat unsur pertama terdapat secara alami, meskipun beberapa ditemukan dalam jumlah renik dan disintesis dalam laboratorium sebelum ditemukan di alam.<ref group="n">Unsur-unsur yang ditemukan pertama kali dari sintesis dan kemudian ditemukan di alam adalah technetium (Z=43), promethium (61), astatin (85), neptunium (93), dan plutonium (94).</ref> Unsur-unsur mulai nomor atom 95 hingga 118 adalah unsur sintetis yang dibuat di laboratorium. Bukti menunjukkan bahwa unsur-unsur nomor 95 s/d 100 sekali ditemukan di alam, tetapi saat ini tidak dijumpai lagi.<ref name="emsley">{{cite book|last=Emsley|first=John|title=Nature's Building Blocks: An A-Z Guide to the Elements|edition=New|year=2011|publisher=Oxford University Press|location=New York, NY|isbn=978-0-19-960563-7}}</ref> Sintesis unsur dengan nomor atom yang lebih besar masih terus dikembangkan. Sejumlah [[radionuklida]] sintetis atau unsur yang berada di alam telah diproduksi di laboratorium.
 
Tabel periodik standar memberikan informasi dasar mengenai suatu unsur. Ada juga [[#Tampilan lain|cara lain untuk menampilkan unsur-unsur kimia]] dengan memuat keterangan lebih atau dari persepektif yang berbeda.
=== Tampilan lain ===
 
== Ikhtisar ==
* [[Tabel periodik (standar)|Table periodik standar]] (s.d.a.) memuat informasi dasar.
*Bentuk [[Tabelumum tabel periodik (alternatif)|sebagai berikut{{Tabel alternate]]periodik}}
* [[Tabel periodik (anti)|Tabel anti]]
* [[Tabel periodik (besar)|Tabel besar]] memuat hal-hal dasar dan nama lengkap unsur.
* [[Tabel periodik (sangat besar)|Tabel sangat besar]] memuat informasi dasar, nama lengkap unsur, dan [[massa atom]]nya.
* [[Tabel periodik (lebar)|Tabel lebar]]
* [[Tabel periodik (diperluas)|Tabel diperluas]]
* [[Tabel periodik (Tiongkok)|Tabel di Tiongkok]]
* [[Tabel periodik (konfigurasi elektron)|Konfigurasi elektron]]
* [[Tabel periodik (logam dan bukan logam)|Logam dan bukan logam]]
* [[Tabel periodik (blok)|Tabel periodik diisi menurut blok]]
* [[Daftar unsur menurut nama]]
* [[Daftar unsur menurut lambang unsur]]
* [[Daftar unsur menurut nomor atom]]
* [[Daftar unsur menurut titik didih]]
* [[Daftar unsur menurut titik leleh]]
* [[Daftar unsur menurut kepadatan]]
* [[Daftar unsur menurut massa atom]]
 
Masing-masing unsur memiliki nomor atom unik yang menunjukkan jumlah proton dalam intinya. Sebagian besar unsur memiliki jumlah netron yang berbeda untuk atom yang berbeda. Hal semacam ini dikenal sebagai isotop. Sebagai contoh, karbon memiliki tiga isotop alami: semua atom tersebut memiliki enam proton dan sebagian besarnya memiliki enam netron juga, tetapi sekitar satu persen mempunyai tujuh netron, dan sebagian renik mempunyai delapan netron. Isotop tidak disajikan terpisah dalam tabel periodik. Mereka selalu dikelompokkan bersama sebagai unsur tunggal. Massa atom unsur yang tidak memiliki isotop stabil diambil dari isotop yang ''paling stabil'', dituliskan di dalam kurung.<ref>Greenwood, pp.24–27</ref>
Dan ini adalah [http://bic.beckman.uiuc.edu/mritab1/ tabel periodik] untuk [[resonansi magnetis]].
 
Beberapa presentasi memasukkan [[Neutronium|''unsur nol'']]. yaitu unsur yang tersusun hanya dari netron saja. Misalnya dalam [[Astrokimia|Kimia Antariksa]].
== Penjelasan struktur tabel periodik ==
 
Dalam tabel periodik standar, unsur disusun menurut kenaikan nomor atom (jumlah [[proton]] dalam [[inti atom]]). Baris (''[[Periode tabel periodik|periode]]'') baru dimulai saat kulit elektron baru mempunyai elektron pertamanya. Kolom (''[[Golongan tabel periodik|golongan]]'') ditentukan berdasarkan [[konfigurasi elektron]]; unsur-unsur yang memiliki kesamaan jumlah elektron dalam subkulit tertentu berada dalam kolom yang sama (contoh: [[oksigen]] dan [[selenium]] berada di kolom yang sama karena keduanya mempunyai empat elektron pada subkulit-p terluarnya). Unsur-unsur dengan kesamaan sifat kimia biasanya jatuh ke dalam golongan yang sama pada tabel periodik, meskipun dalam blok-f, dan beberapa ditemukan di blok-d, unsur-unsur dalam periode yang sama cenderung memiliki kesamaan sifat kimia. Oleh karena itu, relatif mudah untuk memperkirakan sifat kimia suatu unsur jika diketahui sifat unsur-unsur di sekelilingnya.<ref>[[#Gray|Gray]], p. 6</ref>
Jumlah [[kulit elektron]] yang dimiliki sebuah atom menentukan periode atom tersebut. Setiap kulit memiliki beberapa subkulit, yang terisi menurut urutan berikut ini, seiring dengan bertambahnya nomor atom:
 
Hingga tahun 2016, terdapat 118 unsur yang telah dikonfirmasi pada tabel periodik, meliputi unsur 1 (hidrogen) hingga 118 (oganesson), dengan penambahan terbaru ([[nihonium]], [[moscovium]], [[tennessine]], dan [[oganesson]]) yang dikonfirmasi oleh ''[[International Union of Pure and Applied Chemistry]]'' (IUPAC) pada tanggal 30 Desember 2015 dan secara resmi diberi nama pada tanggal 28 November 2016: mereka menyelesaikan tujuh baris pertama Tabel periodik.<ref name="BBC News"/><ref name="St. Fleur"/>
1s
2s 2p
3s 3p
4s 3d 4p
5s 4d 5p
6s 4f 5d 6p
7s 5f 6d 7p
8s 5g 6f 7d 8p
...
 
Sebanyak 94 unsur terdapat secara alami; sisanya 20 unsur dari amerisium hingga kopernisium dan flerovium serta livermorium, hanya ada jika disintesis di laboratorium. Dari 94 unsur alami, 84 adalah [[Unsur primordial|primordial]] (unsur purba). Sepuluh lainnya muncul jika ada peluruhan dari unsur primordial.<ref name="emsley" /> Tidak ada unsur yang lebih berat daripada einsteinium (unsur 99) yang ditemui dalam jumlah besar dan bentuknya murni. Bahkan astatin (unsur 85); fransium (unsur 87) hanya terdeteksi dalam bentuk emisi cahaya dari jumlah mikroskopis (300.000 atom).<ref>{{Cite book|title = The Chemistry of the Actinide and Transactinide Elements|editor1-last = Morss|editor2-first = Norman M.|editor2-last = Edelstein|editor3-last = Fuger|editor3-first = Jean|last = Silva|first = Robert J.|chapter = Fermium, Mendelevium, Nobelium and Lawrencium|publisher = [[Springer Science+Business Media]]|year = 2006|isbn = 1-4020-3555-1|location = Dordrecht, The Netherlands|edition = 3rd|ref = CITEREFHaire2006}}</ref>
Berdasarkan hal inilah struktur tabel disusun. Karena elektron terluar menentukan sifat kimia suatu unsur, unsur-unsur yang segolongan umumnya mempunyai sifat kimia yang mirip. Unsur-unsur segolongan yang berdekatan mempunyai sifat fisika yang mirip, meskipun [[massa]] mereka jauh berbeda. Unsur-unsur seperiode yang berdekatan mempunyai massa yang hampir sama, tetapi sifat yang berbeda.
 
=== Tampilan lain ===
Sebagai contoh, dalam periode kedua, yang berdekatan dengan [[Nitrogen]] (N) adalah [[Karbon]] (C) dan [[Oksigen]] (O). Meskipun massa unsur-unsur tersebut hampir sama (massanya hanya selisih beberapa [[satuan massa atom]]), mereka mempunyai sifat yang jauh berbeda, sebagaimana bisa dilihat dengan melihat [[alotrop]] mereka: oksigen diatomik adalah [[gas]] yang dapat terbakar, nitrogen diatomik adalah gas yang tak dapat terbakar, dan karbon adalah zat [[padat]] yang dapat terbakar (ya, [[berlian]] pun dapat terbakar!).
{| align=right style="border:1px solid grey; max-width:40%; margin:0 0 0.5em 0.5em;"
! colspan=2 | Tampilan tabel periodik
|- style="vertical-align:top"
| style="border-right:1px solid grey;" |[[Berkas:Periodic Table overview (standard).svg|nir|x100px|Tabel periodik dengan blok-f dipisahkan]]
| [[Berkas:Periodic Table overview (wide).svg|nir|kiri|x75px|Tabel periodik dengan blok-f ''inline'']]
|-
| colspan=2 style="font-size:85%;" | Lantanida dan aktinida dipisah (kiri; 18&nbsp;kolom) dan dimasukkan dalam tabel utama (kanan; 32&nbsp;kolom)
|}
Tampilan tabel periodik yang paling umum, tabel utama terdiri dari 18 kolom dan lantanida serta aktinida ditampilkan sebagai dua baris tambahan di bawah tabel utama,<ref>[[#Gray|Gray]], p. 11</ref> dengan dua ruang kosong ditampilkan dalam tabel utama, yaitu di antara barium dan hafnium, dan radium dan rutherfordium. Ruang kosong ini dapat berpenanda asterik, atau deskripsi kecil unsur ("57–71"). Konvensi ini murni semata-mata format praktis. Struktur tabel yang sama dapat disajikan dalam format 32 kolom, dengan lantanida dan aktinida di dalam baris 6 dan 7 tabel utama.
 
Namun, berdasarkan sifat kimia dan fisika unsur-unsur, banyak struktur tabel alternatif yang telah dibuat.
Sebaliknya, yang berdekatan dengan unsur [[Klorin]] (Cl) di tabel periodik, dalam golongan [[Halogen]], adalah [[Fluorin]] (F) dan [[Bromin]] (Br). Meskipun massa unsur-unsur tersebut jauh berbeda, alotropnya mempunyai sifat yang sangat mirip: Semuanya bersifat sangat [[korosif]] (yakni mudah bercampur dengan [[logam]] membentuk [[garam]] [[logam halida]]); klorin dan fluorin adalah gas, sementara bromin adalah [[cairan]] bertitik didih yang rendah; sedikitnya, klorin dan bromin sangat berwarna.
 
== Klasifikasi ==
 
== Metode pengelompokan ==
=== Golongan ===
{{utama|Golongan tabel periodik}}
Kolom dalam tabel periodik disebut [[golongan tabel periodik|golongan]]. Ada 18 golongan dalam tabel periodik baku. Unsur-unsur yang segolongan mempunyai konfigurasi [[elektron valensi]] yang mirip, sehingga mempunyai sifat yang mirip pula.
''Golongan'' atau ''famili'' adalah kolom vertikal dalam tabel periodik. Golongan biasanya mempunyai tren periodik yang lebih bermakna daripada periode dan blok, yang akan dijelaskan kemudian. Teori mekanika kuantum modern dari struktur atom menjelaskan bahwa unsur-unsur yang berada dalam golongan yang sama memiliki konfigurasi elektron yang sama pada kulit valensinya.<ref>Scerri 2007, p. 24</ref> Akibatnya, unsur-unsur dalam golongan yang sama cenderung memiliki sifat serta tren yang jelas seiring dengan kenaikan nomor atom.<ref>{{Cite|last = Messler|first = R. W.|year = 2010|title = The essence of materials for engineers|publisher = Jones & Bartlett Publishers.|page = 32|isbn = 0-7637-7833-8|location = Sudbury, MA}}.</ref> Namun, dalam beberapa bagian tabel periodik, seperti blok-d dan blok-f, kesamaan horisontal lebih penting, atau lebih jelas daripada kesamaan vertikalnya.<ref>{{Cite book|last = Bagnall|first = K.W.|year = 1967|contribution = Recent advances in actinide and lanthanide chemistry|title = Advances in chemistry, Lanthanide/Actinide chemistry|volume = 71|pages = 1–12|publisher = American Chemical Society|doi = 10.1021/ba-1967-0071|editor1-first = P.R.|editor1-last = Fields|editor2-first = T.|editor2-last = Moeller|series = Advances in Chemistry|isbn = 0-8412-0072-6|postscript = .}}</ref><ref>{{Cite book|last1 = Day|first1 = M.C., Jr.|last2 = Selbin|first2 = J.|title = Theoretical inorganic chemistry|year = 1969|publisher = Nostrand-Rienhold Book Corporation|edition = 2nd|location = New York|isbn = 0-7637-7833-8|page = 103}}</ref><ref>{{Cite book|last1 = Holman|first1 = J.|last2 = Hill|first2 = G.C|title = Chemistry in context|year = 2000|publisher = Nelson Thornes|edition = 5th|location = Walton-on-Thames|isbn = 0-17-448276-0|page = 40}}</ref>
Ada tiga sistem pemberian [[Golongan tabel periodik#Nomor Golongan|nomor golongan]]. Sistem pertama memakai [[angka Arab]] dan dua sistem lainnya memakai [[angka Romawi]]. Nama dengan angka Romawi adalah nama golongan yang asli tradisional. Nama dengan angka Arab adalah sistem tatanama baru yang disarankan oleh ''International Union of Pure and Applied Chemistry'' ([[IUPAC]]). Sistem penamaan tersebut dikembangkan untuk menggantikan kedua sistem lama yang menggunakan angka Romawi karena kedua sistem tersebut membingungkan, menggunakan satu nama untuk beberapa hal yang berbeda.<br />
 
Pada konvensi tatanama internasional, golongan diberi angka numerik dari 1 hingga 18 dari kolom paling kiri (logam alkali) hingga kolom paling kanan (gas mulia).<ref name=":1">{{Cite|last = Leigh|first = G.J.|year = 1990|title = Nomenclature of Inorganic Chemistry: Recommendations 1990|publisher = Blackwell Science|isbn = 0-632-02494-1}}</ref> Sebelumnya, dikenal penomoran menggunakan [[angka Romawi]]. Di Amerika, angka Romawi diikuti dengan huruf "A" jika golongan berada dalam [[blok-s]] atau [[blok-p]], atau "B" jika berada pada [[blok-d]]. Angka Romawi digunakan merujuk pada angka terakhir konvensi penamaan terkini (misal: [[unsur golongan 4]] sebelumnya adalah IVB, dan [[Unsur golongan 14|golongan 14]] sebelumnya adalah golongan IVA). Di Eropa, penggunaan abjad juga sama, kecuali: "A" digunakan jika golongan berada sebelum [[Unsur golongan 10|golongan 10]], dan "B" digunakan untuk golongan 10 dan seterusnya. Selain itu, golongan 8, 9, dan 10 diperlakukan sebagai satu golongan berukuran tiga, telah diketahui secara umum yang diberi tanda golongan VIII. Pada tahun 1988, digunakan sistem penamaan IUPAC baru, dan nama golongan lama telah dianggap usang.<ref>{{Cite|last = Fluck|first = E.|year = 1988|title = New Notations in the Periodic Table|journal = [[Pure and Applied Chemistry|Pure Appl. Chem.]]|volume = 60|pages = 431–436|publisher = [[International Union of Pure and Applied Chemistry|IUPAC]]|doi = 10.1351/pac198860030431|url = http://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf|issue = 3}}</ref>
 
Beberapa golongan ini telah memiliki nama trivial (non-sistematis), seperti terlihat pada tabel di bawah, meskipun jarang digunakan. Golongan 3–10 tidak memiliki nama trivial dan hanya merujuk pada nomor golongannya atau nama unsur teratas dalam golongan tersebut (misalnya, "golongan skandium" untuk Golongan 3), karena hanya memiliki sedikit kesamaan tren vertikal.<ref name=":1" />
 
Unsur-unsur dalam golongan yang sama cenderung menunjukkan pola tertentu dalam hal jari-jari atom, energi ionisasi, dan elektronegativitas. Dari atas ke bawah dalam satu golongan, jari-jari atom bertambah. Oleh karena lebih banyak tingkat energi yang terisi, elektron valensi ditemukan lebih jauh dari inti atom. Dari atas ke bawah, masing-masing unsur yang berurutan memiliki energi ionisasi yang lebih rendah karena lebih mudah melepaskan elektron akibat ikatan atom yang kurang kuat. Demikian pula, dari atas ke bawah elektronegativitasnya juga semakin kecil akibat penambahan jarak antara elektron valensi dengan inti atom.<ref name=":2">Moore, p. 111</ref> Terdapat perkecualian terhadap tren ini, misalnya yang terjadi pada golongan 11 di mana elektronegativitas meningkat dalam satu golongan dari atas ke bawah.<ref name=":7">Greenwood, p. 30</ref>
 
{{Periodic table (group names)}}
Golongan bisa dianggap sebagai cara yang paling penting dari mengklasifikasi unsur. Pada beberapa golongan, unsur-unsurnya ada yang sangat mirip sifatnya dan memiliki kecenderungan sifat yang jelas jika ditelusuri menurun di dalam kolom. Golongan-golongan ini sering diberi nama umum (tak sistematis) sebagai contoh: [[logam alkali]], [[logam alkali tanah]], [[halogen]], [[khalkogen]], dan [[gas mulia]]. Beberapa golongan lainnya dalam tabel tidak menampilkan sebanyak persamaan maupun kecenderungan sifat secara vertikal (sebagai contoh Kelompok 14 dan 15), golongan ini tidak memiliki nama umum.
 
=== Periode ===
{{utama|Periode tabel periodik}}
Baris dalam tabel periodik disebut [[Periode tabel periodik|periode]]. Walaupun golongan adalah cara yang paling umum untuk mengklasifikasi unsur, ada beberapa bagian di tabel unsur yang kecenderungan sifatnya secara horisontal dan kesamaan sifatnya lebih penting dan mencolok daripada kecenderungan vertikal. Fenomena ini terjadi di blok-d (atau "logam transisi"), dan terutama blok-f, dimana lantinida dan aktinida menunjukan sifat berurutan yang sangat mencolok.
''Periode'' adalah baris horizontal dalam tabel periodik. Meskipun golongan lebih menggambarkan tren periodik, tetapi ada beberapa bagian di mana tren horizontal lebih signifikan daripada tren vertikal. Seperti pada blok-f, di mana [[lantanida]] dan [[aktinida]] membentuk dua seri unsur horizontal yang substansial.<ref>{{Cite|last = Stoker|first = Stephen H.|year = 2007|title = General, organic, and biological chemistry|location = New York|publisher = Houghton Mifflin|page = 68|isbn = 978-0-618-73063-6|oclc = 52445586}}</ref>
 
Unsur-unsur dalam periode yang sama menunjukkan tren jari-jari atom, energi ionisasi, [[afinitas elektron]], dan elektronegativitas. Dari kiri ke kanan dalam periode yang sama, jari-jari atom biasanya menyusut. Hal ini terjadi karena masing-masing unsur yang berurutan menambah proton dan elektron, yang menyebabkan elektron tertarik lebih dekat ke inti atom.<ref>{{Cite|last = Mascetta|first = Joseph|year = 2003|title = Chemistry The Easy Way|edition = 4th|location = New York|publisher = Hauppauge|page = 50|isbn = 978-0-7641-1978-1|oclc = 52047235}}</ref> Penurunan jari-jari atom ini juga menyebabkan energi ionisasi meningkat dari kiri ke kanan dalam satu periode. Semakin kuat ikatan suatu unsur, semakin banyak energi yang diperlukan untuk melepas elektron. Elektronegativitas meningkat sesuai kenaikan energi ionisasi karena elektron tertarik ke inti atom.<ref name=":2" /> Afinitas elektron juga menunjukkan kecenderungan serupa dalam periode yang sama. Logam (periode sebelah kiri) umumnya memiliki afinitas elektron yang lebih rendah daripada non logam (periode sebelah kanan), dengan pengecualian pada gas mulia.<ref>{{Cite|last1 = Kotz|first1 = John|last2 = Treichel|first2 = Paul|last3 = Townsend|first3 = John|year = 2009|title = Chemistry and Chemical Reactivity, Volume 2|edition = 7th|location = Belmont|publisher = Thomson Brooks/Cole|page = 324|isbn = 978-0-495-38712-1|oclc = 220756597}}</ref>
== Periodisitas Sifat Kimia ==
 
=== Blok ===
Nilai utama dari tabel periodik adalah kemampuan untuk memprediksi sifat kimia dari sebuah unsur berdasarkan lokasi di tabel. Perlu dicatat bahwa sifat kimia berubah banyak jika bergerak secara vertikal di sepanjang kolom di dalam tabel dibandingkan secara horizontal sepanjang baris.
[[Berkas:Periodic table blocks spdf (32 column).svg|jmpl|350px|Kiri ke kanan: blok-s, -f, -d, -p dalam tabel periodik]]
{{Utama|Blok tabel periodik}}
Bagian tertentu pada tabel periodik dapat dirujuk sebagai blok sesuai dengan urutan pengisian kulit elektron unsur-unsurnya. Masing-masing blok diberi nama sesuai dengan sub kulit tempat elektron terakhir berada.<ref name=":10">[[#Gray|Gray]], p. 12</ref><ref group="n">Terdapat inkonsistensi dan beberapa ketakteraturan dalam konvensi ini. Helium diletakkan dalam blok-p tetapi pada kenyataannya adalah unsur blok-s, dan (sebagai contoh) subkulit-d dalam blok-d telah terisi penuh saat golongan 11 tercapai, bukan golongan 12.</ref> [[Blok-s]] terdiri dari dua golongan pertama (logam alkali dan alkalil tanah) ditambah hidrogen dan helium. [[Blok-p]] terdiri dari enam golongan terakhir, yaitu golongan 13 hingga 18 sesuai IUPAC (3A hingga 8A sesuai penamaan Amerika), dan mengandung, sebagian besar, [[metaloid]]. [[Blok-d]] terdiri dari golongan 3 hingga 12 (atau golongan 3B hingga 2B dalam penggolongan sistem Amerika) dan seluruhnya merupakan [[logam transisi]]. [[Blok-f]], seringkali diletakkan di bawah tabel utama, tidak mempunyai nomor golongan dan terdiri dari lantanida dan aktinida.<ref>{{Cite|last = Jones|first = Chris|year = 2002|title = d- and f-block chemistry|location = New York|page = 2|publisher = J. Wiley & Sons|isbn = 978-0-471-22476-1|oclc = 300468713}}</ref>
 
==== KecenderunganLogam, Periodisitasmetaloid, dalamdan Golongannonlogam ====
[[Berkas:Periodic table (metals–metalloids–nonmetals, 32 columns).png|300px|ka|jmpl|{{legend inline|1={{element color|metals}}|2=Logam|border=none}}, {{legend inline|1={{element color|metalloids}}|2=metaloid|border=none}}, {{legend inline|1={{element color|nonmetals}}|2=nonlogam|border=none}}, dan {{nowrap|{{legend inline|1={{element color|unknown chemical properties}}|2=unsur dengan sifat kimia tak diketahui|border=none}}}} dalam tabel periodik. Beberapa sumber tidak sepakat dengan klasifikasi beberapa unsur ini.]]
[[Berkas:Ionization energies.png|thumb|300px|Kecenderungan periodisas dari [[energi ionisasi]]]]
Sesuai dengan sifat fisika dan kimianya, unsur dapat diklasifikasikan ke dalam tiga kategori besar yaitu [[logam]], [[metaloid]] dan [[nonlogam]]. Logam umumnya berkilau, padatan dengan konduktivitas tinggi, dapat membentuk aloy dengan logam lainnya dan membentuk senyawa ion serupa garam dengan nonlogam (selain [[gas mulia]]). Sebagian besar nonlogam berupa gas berwarna atau tak berwarna; nonlogam yang membentuk senyawa dengan nonlogam lainnya berikatan secara kovalen. Di antara logam dan nonlogam ada metaloid, yang mempunyai sifat di antara logam dan nonlogam atau campuran keduanya.<ref>{{Cite|last = Silberberg|first = M.S.|year = 2006|title = Chemistry: The molecular nature of matter and change|edition = 4th ed.|location = New York|publisher = McGraw-Hill|page = 536|isbn = 0-07-111658-3}}</ref>
Teori struktur atom [[mekanika kuantum]] modern menjelaskan kecenderungan golongan dengan memproposisikan bahwa unsur dalam golongan yang sama memiliki konfigurasi elektron yang sama dalam kulit terluarnya, yang merupakan faktor terpenting penyebab sifat kimia yang mirip. Unsur-unsur dalam golongan yang sama juga menunjukkan pola [[jari-jari atom]], [[energi ionisasi]], dan [[elektronegativitas]]. Dari urutan atas ke bawah dalam golongan, jari-jari atom unsur bertambah besar. Karena lebih banyak susunan energi yang terisi, elektron valensi terletak lebih jauh dari inti. Dari urutan atas, setiap unsur memiliki energi ionisasi yang lebih rendah dari unsur sebelumnya karena lebih mudahnya sebuah elektron terlepas karena elektron terluarnya yang semakin jauh dari inti. Demikian pula, suatu golongan juga menampilkan penurunan elektronegativitas dari urutan atas ke bawah karena peningkatan jarak antara elektron valensi dan inti.
 
Logam dan nonlogam dapat diklasifikasikan lebih lanjut ke dalam subkategori yang menunjukkan gradasi sifat dari logam ke nonlogam, untuk unsur-unsur dalam periode yang sama. Logam terbagi ke dalam logam alkali yang reaktif, logam alkali tanah yang kurang reaktif, lantanida dan aktinida, logam transisi, dan terakhir logam pasca-transisi dengan sifat fisika dan kimia paling lemah. Nonlogam dibagi menjadi nonlogam poliatomik, yang lebih mirip dengan metaloid; nonlogam diatomik, yang merupakan nonlogam esensial; dan gas mulia monoatomik, yang merupakan nonlogam dan hampir inert sempurna. Penggolongan terspesialisasi seperti logam refraktori dan logam mulia, yang merupakan (dalam kasus ini) logam transisi, juga diketahui<ref>{{Cite|last1 = Manson|first1 = S.S.|last2 = Halford|first2 = G.R.|year = 2006|title = Fatigue and durability of structural materials|location = Materials Park, Ohio|publisher = ASM International|page = 376|isbn = 0-87170-825-6}}</ref> dan terkadang dicantumkan.<ref>{{Cite|last = Bullinger|first = Hans-Jörg|year = 2009|title = Technology guide: Principles, applications, trends|location = Berlin|publisher = Springer-Verlag|page = 8|isbn = 978-3-540-88545-0}}</ref>
==== Kecenderungan Periodisasi Periode ====
 
Unsur-unsur dalam periode yang sama memiliki kecenderungan dalam jari-jari atom, energi ionisasi, afinitas elektron dan elektronegativitas. Dari kiri ke kanan, jari-jari atom biasanya menurun. Hal ini terjadi karena setiap unsur mendapat tambahan proton dan elektron yang menyebabkan elektron tertarik lebih dekat ke inti. Penurunan jari-jari atom ini juga menyebabkan meningkatnya energi ionisasi jika bergerak dari urutan kiri ke kanan. Semakin rapat terikatnya suatu unsur, semakin banyak energi yang diperlukan untuk melepaskan sebuah elektron. Demikian juga elektronegativitas, yang meningkat bersamaan dengan energi ionisasi karena tarikan oleh inti pada elektron. Afinitas elektron juga mempunyai kecenderungan, walau tidak semenyolok pada sebuah periode. Logam (bagian kiri dari perioda) pada umumnya memiliki afinitas elektron yang lebih rendah dibandingkan dengan unsur nonmetal (periode sebelah kanan), dengan pengecualian gas mulia.
Mengelompokkan unsur ke dalam kategori dan subkategori berdasarkan kesamaan sifat tidaklah sempurna. Terdapat suatu spektrum sifat di dalam masing-masing kategori dan tidaklah sulit untuk menentukan tumpangsuh pada perbatasan, seperti dalam kasus kebanyakan skema klasifikasi.<ref>{{Cite|last = Jones|first = B.W.|year = 2010|title = Pluto: Sentinel of the outer solar system|location = Cambridge|publisher = Cambridge University Press|pages = 169–71|isbn = 978-0-521-19436-5}}</ref> Berilium, misalnya, diklasifikasikan sebaga logam alkali tanah, meskipun memiliki kecenderungan amfoter secara kimia dan kebanyakan membentuk senyawa kovalen adalah dua hal yang melemahkan posisinya sebagai logam. Radon dikelompokkan sebagai nonlogam dan merupakan gas mulia tetapi mempunyai kecenderungan membentuk kation seperti logam. Dimungkinkan ada klasifikasi lainnya seperti pembagian unsur ke dalam [[Klasifikasi Goldschmidt|kategori kelimpahan mineraloginya]], atau [[Struktur kristal tabel periodik|struktur kristalnya]]. Pengkategorian unsur dimulasi sejak Hinrichs,<ref>{{Cite|last = Hinrichs|first = G.D.|year = 1869|title = On the classification and the atomic weights of the so-called chemical elements, with particular reference to Stas's determinations|journal = Proceedings of the American Association for the Advancement of Science|volume = 18|issue = 5|pages = 112–124}}</ref> pada tahun 1869 menulis bahwa garis batas sederhana dapat digambarkan pada tabel periodik untuk menunjukkan unsur dengan kesamaan sifat, seperti logam dan nonlogam, atau unsur-unsur gas.
 
== Tren periodik ==
{{Utama|Tren periodik}}
 
=== Konfigurasi elektron ===
{{Utama|Konfigurasi elektron}}
 
[[Berkas:Klechkovski rule.svg|upright=0.9|jmpl|kiri|Perkiraan orde penyusunan kulit dan subkulit dengan kenaikan energi sesuai [[aturan Madelung]]]]
 
[[Konfigurasi elektron]] atau organisasi elektron yang mengorbit atom netral menunjukkan keberulangan pola atau periodisitas. Elektron menempati serangkaian [[Kelopak elektron|kulit elektron]] (bernomor kulit 1, kulit 2, dst). Masing-masing kulit mengandung satu atau lebih subkulit (disebut s, p, d, f dan g). Seiring dengan naiknya [[nomor atom]], elektron secara progresif mengisi kulit dan subkulit ini sesuai dengan [[aturan Madelung]] atau aturan orde energi, seperti ditunjukkan dalam gambar. Konfigurasi elektron [[neon]], misalnya, adalah 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>. Dengan nomor atom sepuluh, neon memiliki dua elektron pada kulit pertamanya, dan delapan elektron pada kulit kedua—dua pada subkulit s dan enam pada subkulit p. Dalam istilah tabel periodik, pertama kali elektron menempati kulit baru berarti memulai periode baru. Posisi ini di ditempati oleh [[hidrogen]] dan [[logam alkali]].<ref name=":3">{{Cite|last = Myers|first = R.|year = 2003|title = The basics of chemistry|location = Westport, CT|publisher = Greenwood Publishing Group|pages = 61–67|isbn = 0-313-31664-3}}</ref><ref name=":4">{{Cite|last = Chang|first = Raymond|year = 2002|title = Chemistry|edition = 7th|location = New York|publisher = McGraw-Hill|pages = 289–310; 340–42|isbn = 0-07-112072-6}}</ref>
 
[[Berkas:Tren periodik.svg|upright=1.35|jmpl|ka|Tren tabel periodik (arah panah menunjukkan kenaikan)]]
 
Oleh karena sifat suatu unsur sebagian besar ditentukan oleh konfigurasi elektronnya, sifat-sifat unsur menunjukkan keberulangan pola atau perilaku periodik. Contohnya seperti ditunjukkan pada gambar di bawah untuk jari-jari atom, energi ionisasi dan afinitas elektron. Ini merupakan sifat periodisitas, perwujudan dari hal yang telah dinyatakan sebelum dasar teorinya dikembangkan. Ini memicu pemapanan hukum periodik (sifat-sifat unsur berulang pada interval tertentu) dan formulasi tabel periodik pertama.<ref name=":3" /><ref name=":4" />
 
=== Jari-jari atom ===
{{Utama|Jari-jari atom}}
[[Berkas:Empirical atomic radius trends.png|jmpl|upright=1.35|kiri|Nomor atom diplot terhadap jari-jari atom<ref group="n">Gas mulia, astatin, fransium, dan semua unsur yang lebih berat daripada [[americium]] tidak dimasukkan, karena ketiadaan data.</ref>]]
Jari-jari atom dalam tabel periodik bervariasi dalam cara yang dapat diperkirakan dan dijelaskan. Misalnya, jari-jari atom menurun untuk unsur-unsur yang terdapat dalam satu periode, dari logam alkali hingga gas mulia; dan jari-jari atom naik untuk unsur-unsur dalam satu golongan dari atas ke bawah. Jari-jari atom naik tajam antara gas mulia di akhir periode dan logam alkali di awal periode berikutnya. Kecenderungan jari-jari atom ini (dan berbagai sifat fisika dan kimia unsur-unsur lainnya) dapat dijelaskan menggunakan teori kulit elektron atom. Teori tersebut menyajikan bukti-bukti penting untuk pengembangan dan penegasan [[Mekanika kuantum|teori kuantum]].<ref>Greenwood, p. 27</ref>
 
Elektron pada subkulit-4f, mulai dari [[Serium|cerium]] (unsur 58) hingga [[iterbium]] (unsur 70), tidak terlalu efektif melindungi kenaikan muatan inti karena subkulit-4f terlalu jauh dari inti atom. Unsur-unsur tepat setelah lantanida memiliki jari-jari atom yang lebih kecil daripada yang diperkirakan dan hampir sama dengan jari-jari atom unsur-unsur tepat di atasnya.<ref name=":5">{{Cite|last = Jolly|first = W.L.|year = 1991|title = Modern Inorganic Chemistry|edition = 2nd|publisher = McGraw-Hill|page = 22|isbn = 978-0-07-112651-9}}</ref> Oleh karena itu, [[hafnium]] secara virtual memiliki jari-jari atom dan (sifat kimia) seperti [[zirkonium]], dan [[tantalum]] memiliki jari-jari atom yang sama dengan [[niobium]], dan selanjutnya. Hal ini dikenal sebagai [[kontraksi lantanida]]. Pengaruh kontraksi lantanida terpantau hingga [[platina]] (unsur 78), setelah ditutupi oleh [[efek relativistik]] yang dikenal sebagai [[efek pasangan inert]].<ref name=":6">Greenwood, p. 28</ref> [[Kontraksi blok-d]], yang memiliki pengaruh sama antara [[blok-d]] dan [[blok-p]], kurang begitu dikenal dibandingkan kontraksi lantanida, tetapi menimbulkan akibat yang serupa.<ref name=":5" />
 
=== Energi ionisasi ===
{{Utama|Energi ionisasi}}
[[Berkas:First Ionization Energy.svg|jmpl|500px|lang=id|ka|Energi ionisasi: masing-masing periode dimulai dari yang terkecil pada logam alkali, hingga yang terbesar pada gas mulia]]
[[Berkas:Ionization energies-id.svg|jmpl|300px|ka|Kecenderungan periodisasi dari [[energi ionisasi]]]]
 
Energi ionisasi pertama adalah energi yang diserap untuk melepas satu elektron dari sebuah atom. Energi ionisasi kedua adalah energi yang diserap untuk melepas elektron kedua dari sebuah atom, dan seterusnya. Untuk sebuah atom, energi ionisasi yang berurutan meningkat sesuai dengan kenaikan derajat ionisasi. Magnesium, misalnya, memiliki energi ionisasi pertama 738 kJ/mol dan yang kedua sebesar 1.450 kj/mol. Elektron pad orbital yang lebih dekat mengalami gaya tarik elektrostatik yang lebih besar, sehingga untuk melepaskannya diperlukan energi yang lebih banyak. Energi ionisasi meningkat dari bawah ke atas (dalam satu golongan) dan dari kiri ke kanan (dalam satu periode) tabel periodik.<ref name=":6" />
 
Lonjakan besar energi ionisasi terjadi saat melepaskan satu elektron dari konfigurasi gas mulia (kulit elektron lengkap). Magnesium, misalnya, dua energi ionisasi pertama yang sudah dijelaskan di atas digunakan untuk melepaskan dua elektron 3s, dan energi ionisasi ketiga jauh lebih besar yaitu 7.730 kj/mol, untuk menghilangkan sebuah elektron 2p dari konfigurasi Mg<sup>2+</sup> yang mirip [[neon]]. Lonjakan serupa juga terjadi pada energi ionisasi atom-atom baris ketiga lainnya.<ref name=":6" />
 
=== Elektronegativitas ===
{{Utama|Elektronegativitas}}
 
[[Berkas:Periodic variation of Pauling electronegativities.png|jmpl|ka|upright=1.35|Grafik yang menunjukkan kenaikan electronegativitas sebanding dengan kenaikan nomor atom dalam satu golongan]]
 
Elektronegativitas adalah kecenderungan suatu [[atom]] untuk menarik [[elektron]].<ref>{{GoldBookRef|file = E01990|title = Electronegativity}}</ref> Elektronegativitas suatu atom dipengaruhi oleh [[nomor atom]] dan jarak antara [[elektron valensi]] dengan inti atom. Semakin besar elektronegativitasnya, semakin kuat unsur menarik elektron. Ini pertama kali dikemukakan oleh [[Linus Pauling]] pada tahun 1932.<ref>{{Cite|last = Pauling|first = L|year = 1932|title = The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms|journal = Journal of the American Chemical Society|volume = 54|issue = 9|pages = 3570–3582|doi = 10.1021/ja01348a011}}</ref> Secara umum, elektronegativitas meningkat dari kiri ke kanan dalam periode yang sama, dan menurun dari atas ke bawah dalam golongan yang sama. Oleh karena itu, [[fluor]] adalah unsur yang paling elektronegatif,<ref group="n">Sementara fluor adalah unsur paling elektronegatif menurut [[skala Pauling]], [[neon]] adalah unsur paling elektronegatif menurut skala lainnya, seperti [[skala Allen]].</ref> sementara [[sesium]] adalah yang paling lemah elektronegativitasnya.<ref name=":7" />
 
Terdapat beberapa pengecualian dari aturan umum ini. [[Galium]] dan [[germanium]] memiliki elektronegativitas yang lebih tinggi daripada [[aluminium]] dan [[silikon]] karena kontraksi blok-d. Unsur-unsur periode empat tepat setelah baris pertama logam transisi memiliki jari-jari atom yang lebih kecil karena elektron-3d tidak efektif melindungi kenaikan muatan inti, dan ukuran atam yang lebih kecil berkorelasi dengan elektronegativitas yang lebih tinggi.<ref name=":7" /> Anomali elektronegativitas [[timbal]] yang lebih besar daripada [[talium]] dan [[bismut]] nampaknya lebih disebabkan pada pengumpulan data (dan ketersediaan data)—termasuk metode kalkulasi—karena metode Pauling tidak menunjukkan kejanggalan tren untuk unsur-unsur tersebut.<ref>{{Cite|last = Allred|first = A.L.|year = 1960|title = Electronegativity values from thermochemical data|journal = Journal of Inorganic and Nuclear Chemistry|publisher = Northwestern University|volume = 17|issue = 3–4|pages = 215–221|doi = 10.1016/0022-1902(61)80142-5}}</ref>
 
=== Afinitas elektron ===
{{Utama|Afinitas elektron}}
[[Berkas:Electron affinity of the elements.svg|jmpl|upright=1.8|lang=id|ka|Ketergantungan afinitas elektron pada nomor atom.<ref>Huheey, Keiter & Keiter, p. 42</ref> Nilainya secara umum meningkat untuk periode yang sama, puncaknya ada pada golongan halogen sebelum menurun drastis pada gas mulia. Contoh puncak terlokalisasi dapat dilihat pada hidrogen, logam alkali dan [[unsur golongan 11]] karena kecenderungan melengkapi kulit-s (dengan kulit 6s pada emas distabilkan oleh efek relativistik dan keberadaan subkulit 4f yang terisi penuh). Efek lokalisasi dapat dilihat pada logam alkali tanah, dan nitrogen, fosfor, mangan serta renium akibat kulit-s terisi penuh, atau kulit-p atau -d yang setengah terisi.<ref>{{cite book|last1=Siekierski|first1=Slawomir|last2=Burgess|first2=John|title=Concise chemistry of the elements|publisher=Horwood Publishing|location=Chichester|year=2002|isbn=1-898563-71-3|pages=35‒36}}</ref>]]
 
Afinitas elektron suatu atom adalah jumlah energi yang dilepaskan ketika sebuah elektron ditambahkan ke dalam atom netral untuk membentuk ion negatif. Meskipun afinitas elektron sangat bervariasi, tetapi ada pola yang dapat ditarik. Secara umum, [[nonlogam]] memiliki nilai afinitas elektron yang lebih positif daripada [[logam]]. [[Klorin]] adalah yang paling kuat dalam menarik elektron. Afinitas elektron gas mulia belum sepenuhnya terukur, oleh karenanya ''mungkin'' memiliki nilai yang sedikit negatif.<ref name=":8">Chang, pp. 307–309</ref>
 
Afinitas elektron umumnya meningkat sepanjang periode. Hal ini disebabkan oleh terisinya kulit valensi atom; sebuah atom golongan 17 membebaskan energi lebih besar daripada atom golongan 1 untuk menarik elektron karena atom-atom golongan 17 memiliki kulit valensi yang hampir penuh sehingga lebih stabil.<ref name=":8" />
 
Kecenderungan afinitas elektron menurun sepanjang golongan dari atas ke bawah sudah diperkirakan. Elektron tambahan akan memasuki orbital yang lebih jauh dari inti atom. Oleh karena elektron ini kurang tertarik oleh inti atom, maka pelepasan energinya juga lebih kecil ketika ditambahkan. Meski demikian, dalam satu golongan dari atas ke bawah, sekitar sepertiga unsur mengalami anomali, yaitu unsur-unsur yang lebih berat memiliki afinitas elektron yang lebih tinggi daripada unsur-unsur yang lebih ringan. Sebagian besar, hal ini akibat dari kurangnya perlindungan dari elektron-elektron d dan f. Penurunan seragan afinitas elektron hanya berlaku pada atom-atom golongan 1.<ref>Huheey, Keiter & Keiter, pp. 42, 880–81</ref>
 
=== Karakter logam ===
Semakin kecil energi ionisasi, elektronegativitas, dan afinitas elektron, semakin kuat karakter [[logam]] yang dimiliki suatu unsur. Sebaliknya, karakter nonlogam meningkat sebanding dengan peningkatan sifat-sifat di atas.<ref>{{Cite|last1 = Yoder|first1 = C.H.|last2 = Suydam|first2 = F.H.|last3 = Snavely|first3 = F.A.|year = 1975|title = Chemistry|edition = 2nd|publisher = Harcourt Brace Jovanovich|page = 58|isbn = 0-15-506465-7}}</ref> Sesuai dengan tren periodik ketiga sifat ini, karakter logam cenderung menurun untuk unsur-unsur dalam periode (atau baris) yang sama dan, dengan beberapa penyimpangan (sebagian besar) akibat adanya [[Kimia kuantum relativistik|efek relativistik]],<ref>Huheey, Keiter & Keiter, pp. 880–85</ref> cenderung meningkat dari atas ke bawah untuk unsur-unsur dalam golongan (atau kolom) yang sama. Sebagian besar unsur logam (seperti [[sesium]] dan [[fransium]]) berada pada bagian kiri bawah tabel periodik tradisional dan sebagian besar unsur nonlogam ([[oksigen]], [[fluor]], [[klorin]]) di bagian kanan atas. Kombinasi tren horizontal dan vertikal pada karakter logam menjelaskan [[Garis pembatas antara logam dan nonlogam|garis pembatas]] seperti anak tangga untuk memisahkan antara logam dan non logam yang dapat dijumpai pada beberapa tabel periodik. Beberapa praktisi mengelompokkan unsur-unsur yang ada di sekitar garis batas tersebut sebagai [[metaloid]].<ref>{{Cite|last = Sacks|first = O.|year = 2009|title = Uncle Tungsten: Memories of a chemical boyhood|location = New York|publisher = Alfred A. Knopf|pages = 191, 194|isbn = 0-375-70404-3}}</ref><ref>[[#Gray|Gray]], p. 9</ref>
 
== Sejarah ==
{{utama|Sejarah tabel periodik}}
 
=== Percobaan sistematisasi pertama ===
Tabel periodik pada mulanya diciptakan tanpa mengetahui struktur dalam [[atom]]: jika unsur-unsur diurutkan berdasarkan [[massa atom]] lalu dibuat grafik yang menggambarkan hubungan antara beberapa sifat tertentu dan massa atom unsur-unsur tersebut, akan terlihat suatu perulangan atau ''periodisitas'' sifat-sifat tadi sebagai fungsi dari massa atom. Orang pertama yang mengenali keteraturan tersebut adalah ahli kimia Jerman, yaitu [[Johann Wolfgang Döbereiner]], yang pada tahun [[1829]] memperhatikan adanya beberapa ''triade'' unsur-unsur yang hampir sama.
[[Berkas:Discovery of chemical elements.svg|500px|jmpl|[[Penemuan unsur kimia]] dipetakan ke dalam tabel periodik (pra-, par- dan pasca-)]]
 
Pada tahun 1789, [[Antoine Lavoisier]] mempublikasikan daftar 33 [[unsur kimia]]. Ia mengelompokkannya menjadi [[gas]], [[logam]], [[nonlogam]], dan [[tanah (kimia)|tanah]].<ref>{{cite|last=Siegfried|first=Robert|year=2002|title=From elements to atoms a history of chemical composition|location=Philadelphia, Pennsylvania|publisher=Library of Congress Cataloging-in-Publication Data|page=92|isbn=0-87169-924-9}}</ref> Kimiawan menghabiskan waktu satu abad mencari skema klasifikasi yang lebih memadai. Pada tahun 1829, [[Johann Wolfgang Döbereiner]] mengamati bahwa banyak unsur yang dapat dikelompokkan ke dalam triad berdasarkan sifat-sifat kimianya. [[Litium]], [[natrium]], dan [[kalium]], misalnya, dikelompokkan ke dalam satu triad sebagai logam lunak dan [[Reaktivitas (kimia)|reaktif]]. Döbereiner juga mengamati bahwa, jika disusun berdasarkan berat atom, anggota kedua masing-masing triad memiiliki berat atom rata-rata anggota pertama dan ketiga.<ref name="P100">Ball, p. 100</ref> Ini kemudian dikenal sebagai [[Triad Döbereiner|Hukum Triad]].<ref>{{cite|last=Horvitz|first=Leslie|year=2002|title=Eureka!: Scientific Breakthroughs That Changed The World|location=New York|publisher=John Wiley|page=43|isbn=978-0-471-23341-1|oclc=50766822}}</ref> Kimiawan Jerman [[Leopold Gmelin]] meneliti sistem ini, dan pada tahun 1843 mengidentifikasi sepuluh triad, tiga kelompok empat dan satu kelompok lima. [[Jean-Baptiste Dumas]] mempublikasikan penelitiannya pada tahun 1857 yang menjelaskan hubungan antara berbagai kelompok logam. Meskipun banyak kimiawan mencoba untuk mengidentifikasi hubungan antar kelompok kecil unsur, mereka belum berhasil membangun suatu skema yang dapat menampung semuanya.<ref name="P100"/>
{| class="wikitable"
 
|+ '''Beberapa triade'''
Pada tahun 1858, kimiawan Jerman [[Friedrich August Kekulé von Stradonitz|August Kekulé]] mengamati bahwa karbon seringkali menggandeng empat atom karbon lain. [[Metana]], misalnya, mempunyai satu atom karbon dan empat atom hidrogen. Konsep ini kelak dikenal sebagai [[valensi]]; unsur yang berbeda berikatan dengan sejumlah atom yang berbeda.<ref>{{Cite|last = van Spronsen|first = J.W.|year = 1969|title = The periodic system of chemical elements|location = Amsterdam|publisher = Elsevier|page = 19|isbn = 0-444-40776-6}}</ref>
|-
 
! Unsur !! Massa atom !! Kepadatan
Pada tahun 1862, [[Alexandre-Emile Béguyer de Chancourtois]], geolog Perancis, mempublikasikan bentuk awal tabel periodik, yang disebutnya ''telluric helix'' atau sekrup. Ia adalah orang pertama yang mencatat periodisitas unsur-unsur. Dengan menyusun unsur dalam suatu spiral pada silinder menurut kenaikan berat atom, de Chancourtois menunjukkan bahwa unsur-unsur dengan kesamaan sifat terlihat muncul pada interval tertentu. Diagramnya mencantumkan pula beberapa ion dan senyawa sebagai tambahan, selain unsur-unsur. Makalahnya juga lebih banyak menggunakan istilah-istilah geologi daripada kimia, dan tidak menampilkan gambar; alhasil penelitiannya tidak menarik banyak pihak hingga diteruskan oleh [[Dmitri Mendeleev]].<ref>{{Cite|title = Alexandre-Emile Bélguier de Chancourtois (1820-1886)|language = bahasa Perancis|journal = Annales des Mines history page|url = http://www.annales.org/archives/x/chancourtois.html}}</ref>
|-
 
| Klorin || 35,5 || 0,00156 g/cm<sup>3</sup>
Pada tahun 1864, [[Julius Lothar Meyer]], kimiawan Jerman, mempublikasikan tabel berisi 44 unsur yang disusun berdasarkan valensi. Tabel tersebut menunjukkan bahwa unsur-unsur dengan kesamaan sifat kimia seringkali memiliki valensi yang sama.<ref>Venable, pp. 85–86; 97</ref> Di tempat terpisah, [[William Odling]] (kimiawan Inggris) mempublikasikan suatu penyusunan 57 unsur, yang disusun berdasarkan berat atomnya. Dengan beberapa ketakteraturan dan kesenjangan, ia melihat apa yang tampaknya menjadi periodisitas berat atom antara unsur-unsur dan bahwa ini sesuai dengan 'pengelompokan yang sudah pernah diterima.'<ref>{{Cite|last = Odling|first = W.|year = 2002|title = On the proportional numbers of the elements|journal = Quarterly Journal of Science|volume = 1|pages = 642–648|issue = 643}}</ref> Odling menyinggung ide hukum periodik tapi ia tidak mengembangkannya.<ref name=":12">{{Cite|last = Scerri|first = Eric R.|year = 2011|title = The periodic table: A very short introduction|location = Oxford|publisher = Oxford University Press|isbn = 978-0-19-958249-5}}</ref> Ia kemudian mengusulkan (pada tahun 1870) klasifikasi unsur-unsur berbasis valensi.<ref>{{Cite book|last = Kaji|first = M.|editor1-first = D.H.|editor1-last = Rouvray|editor2-first = R. Bruce|editor2-last = King|title = The periodic table: Into the 21st Century|publisher = Research Studies Press|year = 2004|pages = 91–122 (95)|chapter = Discovery of the periodic law: Mendeleev and other researchers on element classification in the 1860s|isbn = 0-86380-292-3}}</ref>
|-
 
| Bromin || 79,9 || 0,00312 g/cm<sup>3</sup>
[[Berkas:Newlands periodiska system 1866.png|300px|jmpl|Tabel periodik [[John Alexander Reina Newlands|Newlands]], sperti yang dipersembahkan kepada Chemical Society pada 1866, dan berdasarkan pada hukum oktaf]]
|-
Kimiawan Inggris [[John Newlands]] menerbitkan serangkaian makalah dari tahun 1863 hingga 1866 yang mencatat bahwa ketika unsur-unsur disusun berdasarkan kenaikan berat atom, sifat kimia dan fisika yang sama akan berulang pada interval delapan; nampaknya ia menyamakan periodisitas dengan [[oktaf]] musik.<ref>{{Cite|last = Newlands|first = John A.R.|date = 20 August 1864|title = On Relations Among the Equivalents|journal = Chemical News|volume = 10|pages = 94–95|url = http://web.lemoyne.edu/~giunta/EA/NEWLANDSann.HTML#newlands3}}</ref><ref>{{Cite|last = Newlands|first = John A.R.|date = 18 August 1865|title = On the Law of Octaves|journal = Chemical News|volume = 12|page = 83|url = http://web.lemoyne.edu/~giunta/EA/NEWLANDSann.HTML#newlands4}}</ref> Oleh karenanya disebut [[Hukum Oktaf]]. Bagaimanapun, idenya ini menyebabkan Newlands dicemooh oleh para koleganya, dan [[Chemical Society]] menolak mempublikasikan hasil karyanya.<ref>{{Cite|last = Bryson|first = Bill|year = 2004|title = A Short History of Nearly Everything|publisher = Black Swan|pages = 141–142|isbn = 978-0-552-15174-0|url = https://en.wikipedia.org/wiki/A_Short_History_of_Nearly_Everything}}</ref> Namun Newlands mampu merancang sebuah tabel unsur dan menggunakannya untuk memperkirakan keberadaan unsur-unsur yang belum ditemukan, seperti [[germanium]].<ref>Scerri 2007, p. 306</ref> Chemical Society akhirnya mengakui arti penting penemuan Newlands lima tahun setelah pengakuan terhadap Mendeleev.<ref>{{Cite|last1 = Brock|first1 = W.H.|last2 = Knight|first2 = D.M.|year = 1965|title = The Atomic Debates: 'Memorable and Interesting Evenings in the Life of the Chemical Society'|publisher = Isis (The University of Chicago Press)|volume = 56|issue = 1|pages = 5–25|doi = 10.1086/349922}}</ref>
| Iodin || 126,9 || 0,00495 g/cm<sup>3</sup>
 
|-
Pada tahun 1867, [[Gustavus Hinrichs]], kimiawan akademisi kelahiran Denmark yang menetap di Amerika, mempublikasikan sistem periodik spiral berdasarkan spektrum atom, berat atom dan kemiripan sifat kimia. Hasil karyanya dianggap idiosinkratis, tidak membumi dan berbelit-belit.<ref>Scerri 2007, pp. 87, 92</ref><ref>{{Cite|last = Kauffman|first = George B.|date = March 1969|title = American forerunners of the periodic law|journal = Journal of Chemical Education|volume = 46|issue = 3|pages = 128–135 (132)|bibcode = 1969JChEd..46..128K|doi = 10.1021/ed046p128}}</ref>
| Kalsium || 40,1 || 1,55 g/cm<sup>3</sup>
 
|-
=== Tabel Mendeleev ===
| Stronsium || 87,6 || 2,6 g/cm<sup>3</sup>
[[Berkas:Medeleeff by repin.jpg|upright=0.7|jmpl|kiri|Dmitri Mendeleev]]
|-
[[Berkas:Mendeleev's 1869 periodic table.svg|upright=1.15|jmpl|ka|Tabel periodik Mendeleev versi 1869: ''Suatu percobaan pada sistem unsur. Disusun berdasarkan berat atom dan kesamaan sifat kimianya.'' Pengaturan awal yang disajikan dalam bentuk periode (vertikal), dan golongan (horizontal)]]Profesor kimia Rusia [[Dmitri Mendeleev]] dan kimiawan Jerman [[Julius Lothar Meyer]] secara terpisah mempublikasikan tabel periodik mereka pada tahun 1869 dan 1870.<ref>{{Cite|last = Mendelejew|first = Dimitri|year = 1869|title = Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente|journal = Zeitschrift für Chemie|language = bahasa Jerman|pages = 405–406}}</ref> Tabel Mendeleev merupakan versi pertamanya yang dipublikasikan, sementara Meyer merupakan versi pengembangan dari tabel Meyer versi 1864.<ref>Venable, pp. 96–97; 100–102</ref> Keduanya membangun tabelnya dengan menyusun unsur-unsur dalam baris atau kolom sesuai berat atomnya dan memulai baris atau kolom baru ketika karakteristik unsur-unsurnya mulai berulang.<ref>Ball, pp. 100–102</ref>
| Barium || 137 || 3,5 g/cm<sup>3</sup>
 
Pengakuan dan penerimaan yang diperoleh tabel Mendeleev berasal dari dua keputusan yang dibuatnya. Pertama ia meninggalkan beberapa ''lubang'' dalam tabel ketika ia menganggap bahwa unsur terkait belum diketemukan.<ref>{{Cite|last = Pullman|first = Bernard|year = 1998|title = The Atom in the History of Human Thought|publisher = Translated by Axel Reisinger, Oxford University Press|page = 227|isbn = 0-19-515040-6}}</ref> Mendeleev bukan kimiawan pertama yang melakukan ini, tetapi ia adalah yang pertama diakui menggunakan tren dalam tabel periodiknya untuk memprediksi sifat-sifat [[Unsur-unsur prediksi Mendeleev|unsur yang ''hilang'']], seperti [[galium]] dan [[germanium]].<ref>Ball, p. 105</ref> Keputusan kedua adalah terkadang mengabaikan urutan yang dibuat berdasarkan [[berat atom]] dan mengganti dengan unsur di sebelahnya, seperti [[telurium]] dan [[iodin]], agar tercapai klasifikasi yang lebih baik ke dalam [[Golongan tabel periodik|famili kimianya]]. Akhirnya, pada tahun 1913, [[Henry Moseley]] menemukan nilai eksperimental muatan inti atau [[nomor atom]] masing-masing unsur, dan menunjukkan bahwa pengurutan model Mendeleev sebenarnya merujuk kepada kenaikan nomor atom.<ref>{{Cite|last = Atkins|first = P.W.|year = 1995|title = The Periodic Kingdom|publisher = HarperCollins Publishers, Inc.|page = 87|isbn = 0-465-07265-8}}</ref>
 
Pentingnya nomor atom pada penyusunan tabel periodik tidak diapresiasi hingga eksistensi dan sifat-sifat proton dan netron dipahami. Tabel periodik Mendeleev menggunakan berat atom dan bukan nomor atom untuk menyusun unsur-unsurnya. Informasi yang terukur presisi pada zaman Mendeleev. Berat atom sejauh ini cocok bagi sebagian besar kasus, mampu menyajikan prediksi sifat-sifat unsur-unsur yang hilang secara lebih akurat dibandingkan metode-metode lain yang telah diketahui. Penggantian metode ke nomor atom, memberikan urutan unsur berdasarkan bilangan bulat, dan Moseley memperkirakan bahwa unsur yang hilang (tahun 1913) antara aluminium (Z=13) dan emas (Z=79) adalah Z = 43, 61, 72 dan 75, yang akhirnya diketemukan. Urutan nomor atom masih digunakan hingga sekarang, bahkan sebagai dasar penelitian dan pembuatan produk sintetis baru.<ref>{{cite journal|journal=Nucl. Phys. A|volume=789|pages=142–154|year=2007|title=Predictions of alpha decay half lives of heavy and superheavy elements|last1=Samanta|first1=C.|last2=Chowdhury|first2=P. Roy|last3=Basu|first3=D.N.|doi=10.1016/j.nuclphysa.2007.04.001|bibcode=2007NuPhA.789..142S|arxiv = nucl-th/0703086 }}</ref>
 
=== Versi kedua beserta pengembangannya ===
[[Berkas:Periodic table by Mendeleev, 1871.svg|jmpl|kiri|500px|upright=1.80|Tabel periodik Mendeleev 1871 dengan delapan golongan unsur. Garis putus-putus menandakan unsur yang belum diketahui tahun 1871.]][[Berkas:ShortPT20b.png|jmpl|kiri|500px|Tabel periodik model delapan kolom, sudah diperbarui dengan seluruh unsur hingga yang ditemukan tahun 2015]]
 
Pada tahun 1871, Mendeleev mempublikasikan tabel periodiknya dalam bentuk baru, dengan mengelompokkan unsur-unsur yang memiliki kesamaan dalam kolom, tidak lagi dalam baris, dan kolom-kolom ini diberi angka I hingga VIII sesuai dengan tingkat oksidasi unsur-unsurnya. Ia juga memberikan prakiraan detail sifat-sifat unsur yang telah disebutkan sebelumnya sebagai ''hilang'', tetapi sebetulnya menurut dia ada.<ref>Scerri 2007, p. 112</ref> Sela ini perlahan-lahan terisi ketika para kimiawan menemukan unsur-unsur tambahan yang ada secara alami.<ref>{{Cite|last = Kaji|first = Masanori|year = 2002|title = D.I. Mendeleev's Concept of Chemical Elements and the Principle of Chemistry|journal = Bull. Hist. Chem|publisher = Tokyo Institute of Technology|volume = 27|issue = 1|pages = 4–16|url = http://www.scs.illinois.edu/~mainzv/HIST/awards/OPA%20Papers/2005-Kaji.pdf}}</ref> Sering dinyatakan bahwa unsur alami terakhir yang ditemukan adalah [[fransium]] (merujuk pada Mendeleev sebaga ''eka-sesium'') pada tahun 1939.<ref>{{Cite|last1 = Adloff|first1 = Jean-Pierre|last2 = Kaufman|first2 = George B.|date = 25 September 2005|title = Francium (Atomic Number 87), the Last Discovered Natural Element|journal = The Chemical Educator|url = http://chemeducator.org/sbibs/s0010005/spapers/1050387gk.htm}}</ref> Namun, [[plutonium]], yang diproduksi secara sintetis pada 1940, teridentifikasi ada di alam dalam jumlah renik sebagai unsur primordial pada tahun 1971.<ref>{{Cite|last1 = Hoffman|first1 = D.C.|last2 = Lawrence|first2 = F.O.|last3 = Mewherter|first3 = J.L.|last4 = Rourke|first4 = F.M.|year = 1971|title = Detection of Plutonium-244 in Nature|journal = Nature 234|pages = 132–134|bibcode = 1971Natur.234..132H|doi = 10.1038/234132a0|url = http://www.nature.com/nature/journal/v234/n5325/abs/234132a0.html|issue = 5325}}</ref><ref group="n">[[John Emsley]], dalam bukunya, ''Nature’s Building Blocks,'' menuliskan bahwa [[amerisium]], [[kurium]], [[berkelium]] dan [[Kalifornium|californium]] (unsur 95–98) dapat berada secara alami sebagai renik dalam bijih uranium akibat penangkapan netron dan peluruhan beta. Namun penegasan ini tampaknya kurang didukung bukti independen. Lihat: Emsley J. (2011). ''Nature's Building Blocks: An A-Z Guide to the Elements'' (New ed.). New York, NY: Oxford University Press, p. 109.</ref>
 
Tampilan tabel periodik yang populer,<ref>[[#Gray|Gray]], p.&nbsp; 12</ref> juga dikenal sebagai bentuk umum atau bentuk standar (seperti ditunjukkan dalam artikel ini), merupakan hasil karya Horace Groves Deming. Pada tahun 1923, Deming, kimiawan Amerika, mempublikasikan tabel periodik bentuk pendek ([http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=456 Mendeleev style]) dan sedang ([http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=360 18-kolom]).<ref>{{cite book|last=Deming|first=Horace G|title=General chemistry: An elementary survey|year=1923|publisher=J. Wiley & Sons|location=New York|pages =160, 165}}</ref><ref group="n">Tabel 18-kolom versi Deming dapat dilihat di [http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=67 Adams' 16-column Periodic Table of 1911]. Adam menghilangkan unsur tanah jarang dan 'unsur radioaktif' (yaitu aktinida) dari tabel utama dan menggantikannya dengan tanda sisipan untuk menghemat tempat (unsur tanah jarang antara Ba dan eka-Yt; unsur radioaktif antara eka-Te dan eka-I). Lihat: Elliot Q. A. (1911). "A modification of the periodic table". ''Journal of the American Chemical Society.'' '''33'''(5): 684–688 (687).</ref> Merck & Co. menyiapkan ''selebaran'' berisi tabel 18-kolom versi Deming pada tahun 1928, yang kemudian banyak beredar di sekolah-sekolah di Amerika. Pada tahun 1930an, tabel Deming muncul di buku penuntun dan ensiklopedia kimia. Ini juga didistribusikan selama beberapa tahun oleh Sargent-Welch Scientific Company.<ref>{{cite book|last1=Abraham|first1=M|last2=Coshow|first2=D|last3=Fix|first3=W|title=Periodicity:A source book module, version 1.0|publisher=Chemsource, Inc.|location=New York|page=3|url=http://dwb4.unl.edu/chem_source_pdf/PERD.pdf}}</ref><ref>{{cite journal|last=Emsley|first=J|title=Mendeleyev's dream table|journal=New Scientist|date=7 March 1985|pages=32–36(36)}}</ref><ref>{{cite journal|last=Fluck|first=E|year=1988|title=New notations in the period table|journal=Pure & Applied Chemistry|volume=60|issue= 3|pages=431–436 (432)|doi=10.1351/pac198860030431}}</ref>
 
Seiring perkembangan teori [[mekanika kuantum]] modern tentang konfigurasi [[elektron]] dalam atom, semakin jelas bahwa masing-masing periode (baris) dalam tabel sesuai dengan pengisian elektron pada [[Kelopak elektron|kulit kuantum]]. Semakin besar atom, semakin banyak sub kulit elektron yang dimiliki, akhirnya, semakin panjang periode yang harus dicantumkan pada tabel.<ref>Ball, p. 111</ref>
 
[[Berkas:Glenn Seaborg - 1964.jpg|jmpl|ka|upright=0.7|[[Glenn T. Seaborg]] yang, pada tahun 1945, mengusulkan tabel periodik baru dengan meletakkan aktinida sebagai bagian dari seri blok-f kedua]]
 
Pada tahun 1945, [[Glenn Seaborg]], ilmuwan Amerika, memberikan saran agar [[Aktinida|unsur-unsur aktinida]], seperti halnya [[lantanida]], mengisi sub-level f. Sebelumnya, aktinida dimasukkan ke dalam baris keempat blok-d. Kolega Seaborg menyarankan agar tidak mempublikasikan usulan radikal semacam ini karena dapat berdampak buruk pada kariernya. Setelah mempertimbangkan masak-masak hal tersebut tidak membawa dampak buruk pada reputasi maupun kariernya, akhirnya Seaborg mempublikasikan usulannya. Usulan Seaborg dinyatakan benar dan Seaborg memenangkan [[Hadiah Nobel]] bidang kimia pada tahun 1951 atas penelitiannya sintesis unsur-unsur aktinida.<ref>Scerri 2007, pp. 270‒71</ref><ref>{{Cite|last1 = Masterton|first1 = William L.|last2 = Hurley|first2 = Cecile N.|last3 = Neth|first3 = Edward J.|title = Chemistry: Principles and reactions|edition = 7th|location = Belmont, CA|publisher = Brooks/Cole Cengage Learning|page = 173|isbn = 1-111-42710-0}}</ref><ref group="n">Baris tabel periodik ekstra-panjang kedua, untuk mengakomodasi unsur-unsur yang telah diketahui dan belum terungkap dengan berat atom lebih besar daripada bismut (thorium, protaktinium dan uranium misalnya), telah didalilkan sejak 1892. Sebagian besar peneliti menganggap bahwa unsur-unsur ini analog dengan unsur transisi seri ketiga: hafnium, tantalum, wolfram. Keberadaan seri transisi dalam kedua, dalam bentuk aktinida, tidak diterima hingga ditetapkannya kesamaan struktur elektronnya dengan lantanida. Lihat: van Spronsen, J. W. (1969). ''The periodic system of chemical elements.'' Amsterdam: Elsevier. p. 315–316, [[:en:Special:BookSources/0444407766|ISBN 0-444-40776-6]].</ref>
 
Meskipun ada sejumlah kecil [[Unsur transuranium|unsur-unsur transuranium]] terdapat secara alami,<ref name="emsley" /> tetapi kesemuanya pertama kali ditemukan di laboratorium. Produksinya telah memperluas tabel periodik secara signifikan. Transuranium pertama yang disintesis adalah [[neptunium]] (1939).<ref>Ball, p. 123</ref> Oleh karena kebanyakan unsur-unsur transuranium sangat tidak stabil dan meluruh dengan cepat, tantangannya adalah mendeteksi dan melakukan karakterisasi segera setelah diproduksi. Ada [[Kontroversi penamaan unsur|kontroversi]] mengenai persaingan klaim penemuan untuk beberapa elemen. Hal ini membutuhkan tinjauan independen untuk menentukan pihak mana yang memiliki prioritas, dan berhak atas klaim tersebut. Unsur paling terkini yang diterima adalah [[flerovium]] (unsur 114) dan [[livermorium]] (unsur 116), keduanya diresmikan pada 31 Mei 2012.<ref>{{Cite|last1 = Barber|first1 = Robert C.|last2 = Karol|first2 = Paul J|last3 = Nakahara|first3 = Hiromichi|last4 = Vardaci|first4 = Emanuele|last5 = Vogt|first5 = Erich W.|year = 2011|title = Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)|journal = Pure Appl. Chem.|volume = 83|issue = 7|page = 1485|doi = 10.1351/PAC-REP-10-05-01}}</ref> Pada tahun 2010, kolaborasi Rusia–AS di [[Dubna]], [[Oblast Moskwa]], Rusia, mengaku telah mensintesis enam atom [[ununseptium]] (unsur 117), membuatnya sebagai pengakuan terkini.<ref>[http://www.jinr.ru/news_article.asp?n_id=1195&language=rus <nowiki>Эксперимент по синтезу 117-го элемента получает продолжение [Experiment on sythesis of the 117th element is to be continued]</nowiki>] (in Russian). JINR. 2012
</ref>
 
Pada 30 Desember 2015, unsur nomor 113, 115, 117, dan 118 diakui secara resmi oleh [[International Union of Pure and Applied Chemistry|IUPAC]], sehingga melengkapi baris ke-7 tabel periodik.<ref>{{cite web|url=http://www.theguardian.com/science/2016/jan/04/periodic-tables-seventh-row-finally-filled-as-four-new-elements-are-added|title= Periodic table's seventh row finally filled as four new elements are added |work=[[The Guardian]]|date=3 January 2016|accessdate=4 January 2016}}</ref> Nama dan simbol resmi untuk masing-masing unsur ini, yang akan menggantikan nama dan simbol sementara seperti ununpentium (Uup) untuk unsur nomor 115, diperkirakan akan diumumkan kemudian tahun 2016.
 
== Tabel periodik yang berbeda ==
=== Variasi bentuk umum ===
{| class="wikitable floatright" style="margin-left: 20px"
|-
|[[Berkas:Periodic table 14CeTh form---Group 3 = Sc-Y-La-Ac.jpg|Right|x100px]]<br/><small>Tipe I—La, Ac di bawah Y</small>
|}
 
Ada tiga varian utama tabel periodik bentuk umum atau 18-kolom. Mereka berbeda dalam penggambarannya pada kolom [[Unsur golongan 3|golongan 3]].<ref name="fly">{{cite journal |last=Clark |first=R.W. |last2=White |first2=G.D. |date=2008 |title=The Flyleaf Periodic Table|journal=Journal of Chemical Education|volume=85 |issue=4 |page=497 |doi=10.1021/ed085p497}}</ref> Untuk keperluan artikel ini tiga variasi dinyatakan sebagai tipe I, tipe II dan tipe III.
Temuan ini kemudian diikuti oleh ahli kimia Inggris, yaitu [[John Alexander Reina Newlands]], yang pada tahun [[1865]] memperhatikan bahwa unsur-unsur yang bersifat mirip ini berulang dalam interval delapan, yang ia persamakan dengan [[oktaf|oktaf musik]], meskipun ''hukum oktaf''-nya diejek oleh rekan sejawatnya. Akhirnya, pada tahun [[1869]], ahli kimia Jerman [[Lothar Meyer]] dan ahli kimia Rusia [[Dmitry Ivanovich Mendeleyev]] hampir secara bersamaan mengembangkan tabel periodik pertama, mengurutkan unsur-unsur berdasarkan massanya. Akan tetapi, Mendeleyev meletakkan beberapa unsur menyimpang dari aturan urutan massa agar unsur-unsur tersebut cocok dengan sifat-sifat tetangganya dalam tabel, membetulkan kesalahan beberapa nilai massa atom, dan meramalkan keberadaan dan sifat-sifat beberapa unsur baru dalam sel-sel kosong di tabelnya. Keputusan Mendeleyev itu belakangan terbukti benar dengan ditemukannya struktur elektronik unsur-unsur pada akhir [[abad ke-19]] dan awal [[abad ke-20]].
 
'''Tipe I: Sc, Y, La dan Ac.''' Lantanum dan aktinium berada dalam tabel utama, pada golongan 3, di bawah skandium dan itrium. Empat belas unsur golongan lantanida dan aktinida yang mengikutinya ditulis sebagai catatan kaki, untuk menghemat tempat. Ada dua baris berisi empat belas unsur, baris pertama dimulai dengan Ce dan diakhiri dengan Lu, baris kedua dimulai dengan torium dan diakhiri dengan lawrensium. Ini adalah varian yang paling umum.<ref>{{cite book|last1=Myers|first1=R.T.|last2=Oldham|first2=K.B.|first3=Tocci|last3=S.|date=2004|title=Holt Chemistry|location=Orlando|publisher=Holt, Rinehart and Winston|isbn=0-03-066463-2|page=130}}</ref><ref group="n">Clark dan White mengumpulkan koleksi teks kimia umum mereka untuk mengamati tren tabel periodik dari tahun 1948 hingga 2008. Dari 35 teks mereka menemukan 11 tipe I; 9 tipe II; dan 9 tipe III. Lebih dari 20 tahun terakhir sejak periode survey hitungannya adalah 9 tipe I; 9 tipe II dan 2 tipe III. Lihat: {{cite|author=Clark R.W. & White G.D.|year=2008|title=The flyleaf periodic table|journal=Journal of Chemical Education|volume=85|issue=4|page=497}}.</ref> Ini menekankan kesamaan dalam tren periodik turun menurun pada golongan 1, 2 dan 3, dengan memecah lantanida dan aktinida.<ref group="n">Contoh tabel tipe I lihat {{cite|author=Atkins et al.|year=2006|title=Shriver & Atkins Inorganic Chemistry|edition=4th|location=Oxford|publisher=Oxford University Press}} • {{cite|author=Myers et al.|year=2004|title=Holt Chemistry|location=Orlando|publisher=Holt, Rinehart & Winston}} • {{cite|author=Chang R.|year=2000|title=Essential Chemistry|edition=2nd|location=Boston|publisher=McGraw-Hill}}</ref>
== Referensi ==
 
* Mazurs, E.G. (1974). ''Graphical Representations of the Periodic System During One Hundred Years''. Alabama: University of Alabama Press.
{| class="wikitable floatright" style="margin-left: 20px"
* Bouma, J. (1989). "An Application-Oriented Periodic Table of the Elements". ''J. Chem. Ed.''. 66, 741.
|-
||[[Berkas:Periodic table 14LaAc form---Group 3 = Sc-Y-Lu-Lr.jpg|Right|x100px]]<br/><small>Tipe II—Lu, Lr di bawah Y</small>
|}
 
'''Tipe II: Sc, Y, Lu dan Lr.''' Lutesium dan lawrensium berada pada tabel utama, dalam golongan 3, di bawah skandium dan itrium. Catatan kaki adalah 14 unsur golongan lantanida dan aktinida berikutnya dimulai dengan lantanum dan aktinium serta diakhiri dengan iterbium dan nobelium. Varian ini didasarkan pada argumen alternatif dengan memperhatikan kecenderungan periodik sifat-sifat fisika dan kimia lantanum dan lutesium, serta mempertahankan lebar blok-f tetap 14 kolom, dengan tetap memecah lantanida dan aktinida. Ini menekankan kesamaan tren periodik antara golongan 3 dan golongan berikutnya dengan mengorbankan diskontinuitas dalam tren periodik antara golongan 2 dan 3.<ref group="n">Contoh tabel tipe II lihat {{cite|author=Rayner-Canham G. & Overton T.|year=2013|title=Descriptive Inorganic Chemistry|edition=6th|location=New York|publisher=W. H. Freeman and Company}} • {{cite|author=Brown et al.|year=2009|title=Chemistry: The Central Science|edition=11th|location=Upper Saddle River, New Jersey|publisher=Pearson Education}} • {{cite|author=Moore et al.|year=1978|title=Chemistry|location=Tokyo|publisher=McGraw-Hill Kogakusha}}</ref>
 
{| class="wikitable floatright" style="margin-left: 20px"
|-
|[[Berkas:Periodic table 15LaAc form---Group 3 = indeterminate.jpg|Right|x100px]]<br/><small>Tipe III—Tanda di bawah Y</small>
|}
 
'''Tipe III: Sc, Y, dan penanda.''' Dua posisi di bawah skandium dikosongkan atau diberi tanda catatan kaki dalam beberapa cara. Catatan kaki lantanida dan aktinida dimulai dengan lantanum dan aktinium serta diakhiri dengan lutesium dan lawrensium, membentuk dua baris lima belas unsur. Varian ini menekankan kesamaan kimiawi 15 unsur lantanida (La–Lu), dengan mengorbankan ambiguitas untuk unsur yang menempati golongan 3 pada dua posisi di bawah skandium dan itrium, dan terlihat lebar blok ''f'' menjadi 15 kolom (kenyataannya hanya 14 unsur per baris yang dapat ditampung dalam blok-f).<ref group="n">Contoh tabel tipe III lihat {{cite|author=Housecroft C.E. & Sharpe A.G.|year=2008|title=Inorganic Chemistry|edition=3rd|location=Harlow|publisher=Pearson Education}} • {{cite|author=Halliday et al.|year=2005|title=Fundamentals of Physics|edition=7th|location=Hoboken, New Jersey|publisher=John Wiley & Sons}} • {{cite|author=Nebergall et.al.|year=1980|title=General Chemistry|edition=6th|location=Lexington|publisher=D.C. Heath and Company}}</ref>
 
Ketiga varian berasal dari kesulitan bersejarah dalam menempatkan lantanida dalam tabel periodik, dan argumen posisi awal dan akhir unsur blok-f.<ref>{{cite book|last= Thyssen|first= P.|last2= Binnemans|first2= K|editor1-last= Gschneidner Jr.|editor1-first= K.A.|editor2-last= Bünzli|editor2-first= J-C.G|editor3-last= Vecharsky|editor3-first= Bünzli|date= 2011|title= Accommodation of the Rare Earths in the Periodic Table: A Historical Analysis|journal= Handbook on the Physics and Chemistry of Rare Earths|publisher= Elsevier|location= Amsterdam|volume= 41|pages= 1–94|isbn= 978-0-444-53590-0}}</ref> Telah dinyatakan bahwa argumen semacam itu adalah bukti bahwa, "adalah suatu kesalahan memecah sistem [periodik] menjadi blok-blok dengan pembatasan yang tajam."<ref>{{cite journal |last= Stewart |first= P.J.|date= 2008 |title=The Flyleaf Table: An Alternative|journal= Journal of Chemical Education|volume= 85|issue= 11|page= 1490 |doi=10.1021/ed085p1490}}</ref> Sama halnya, beberapa versi tabel tipe III telah dikritik karena menyiratkan bahwa kesemua 15 lantanida menempati kotak tunggal atau menempatkannya di bawah itrium,<ref group = "n">[[Berkas:32 column stretched periodic table.jpg|jmpl|ka|Tabel periodik bentuk panjang, dihasilkan dari penempatan lantanida dan aktinida ke dalam Golongan 3, di bawah Sc dan Y. Dijelaskan oleh Jensen (lihat catatan) sebagai "antik" dan interpretasi yang tidak akan dianjurkan oleh seorang ahli kimia anorganik modern, kecuali "mereka telah kehilangan semua hubungan antara dasar pengembangan tabel periodik dan fakta-fakta kimia."]] Jensen menulis: "Dua kotak di bawah Sc dan Y ... masing-masing mengandung baik nomor atom 57-71 dan 89-103 atau simbol La-Lu dan Ac-Lr, seolah-olah menunjukkan bahwa semua 30 unsur dalam catatan kaki masuk dalam hanya dua kotak. Memperluas tabel semacam itu menjadi tabel 32 kolom akan memerlukan sesuatu untuk meregangkan kotak Sc dan Y sehingga mereka menjangkau semua 15 kolom yang dimasukkan."</ref> melanggar prinsip dasar satu tempat, satu unsur.<ref name="finally"/><ref group = "n">Habashi mencoba untuk mengatasi keberatan ini dengan menempatkan 15 lantanida pada 15 kotak vertikal dari posisi tabel periodik di bawah itrium. Lihat: {{cite|author=Habashi F.|year=2015|url=http://www.eurchembull.com/index.php/ECB/article/view/1563/_132 |title=A New Look at the Periodic Table|journal=European Chemical Bulletin|volume=4|issue=1|pages=1–7 (see p. 5)}}.</ref> Kontroversi tentang unsur yang layak menempati posisi Golongan 3 di bawah skandium dan itrium dibahas lebih lanjut dalam seksi [[Tabel periodik#Unsur-unsur periode 6 dan 7 pada golongan 3|Pertanyaan terbuka dan kontroversi]] artikel ini.
 
Tabel tipe II, sebagai varian umum, ditunjukkan bagian ikhtisar artikel ini. Jika dibandingkan dengan varian tipe I, "terdapat lebih sedikit pengecualian yang nyata pada pengisian seri orbital 4f reguler di antara anggota berikutnya."<ref>{{cite book|last1=Brown|first1 = T.L.|last2=LeMay Jr|first2 = H.E|last3= Bursten|first3 = B.E.|date = 2009|location = Upper Saddle River, New Jersey|publisher = Pearson Education|title = Chemistry: The Central Science|edition = 11|pages = 207, 208–210|isbn= 9780132358484}}</ref><ref group ="n">Untuk tabel periodik Sc-Y-La-Ac dan Sc-Y-Lu-Lr, dua tabel berikut membandingkan jumlah elektron ''f'' yang ideal untuk unsur periode 6 dan 7 dalam blok-f dengan jumlah nyata elektron ''f''. Terdapat 20 penyimpangan dalam tabel pertama dibandingkan 9 dalam tabel kedua.<br><br>
'''TABEL 1: Tabel periodik Sc-Y-La-Ac'''
{| class="wikitable"
|-
|'''Periode 6''' || '''Ce'''|| '''Pr''' || '''Nd''' || '''Pm''' || '''Sm''' || '''Eu''' || '''Gd''' || '''Tb''' || '''Dy''' || '''Ho''' || '''Er''' || '''Tm''' || '''Yb''' || '''Lu'''
|-
| Elektron-f ideal|| 1|| 2|| 3|| 4|| 5|| 6|| 7|| 8|| 9|| 10|| 11|| 12|| 13|| 14
|-
| Jumlah aktual|| 1||style="background-color: gainsboro"| 3||style="background-color: gainsboro"| 4||style="background-color: gainsboro"| 5||style="background-color: gainsboro"| 6||style="background-color: gainsboro"| 7|| 7|| style="background-color: gainsboro"|9|| style="background-color: gainsboro"|10||style="background-color: gainsboro"| 11||style="background-color: gainsboro"| 12||style="background-color: gainsboro"| 13||style="background-color: gainsboro"| 14|| 14
|-
|'''Periode 7''' || '''Th'''|| '''Pa'''|| '''U'''|| '''Np'''|| '''Pu'''|| '''Am'''|| '''Cm'''|| '''Bk'''|| '''Cf'''|| '''Es'''|| '''Fm'''|| '''Md'''|| '''No'''|| '''Lr'''
|-
| Jumlah aktual|| style="background-color: gainsboro"|0|| 2|| 3|| 4|| style="background-color: gainsboro"|6|| style="background-color: gainsboro"|7|| 7||style="background-color: gainsboro"| 9|| style="background-color: gainsboro"|10|| style="background-color: gainsboro"|11||style="background-color: gainsboro"| 12||style="background-color: gainsboro"| 13||style="background-color: gainsboro"| 14|| 14
|}
 
'''TABEL 2: Tabel periodik blok-f Sc-Y-Lu-Lr menunjukkan konfigurasi elektron'''
(arsir abu-abu muda = cocok dengan jumlah ideal elektron ''f''; arsir abu-abu tua = penyimpangan)
{| class="wikitable"
|-
|'''Periode 6''' || '''La'''|| '''Ce'''|| '''Pr''' || '''Nd''' || '''Pm''' || '''Sm''' || '''Eu''' || '''Gd''' || '''Tb''' || '''Dy''' || '''Ho''' || '''Er''' || '''Tm''' || '''Yb'''
|-
| Elektron-f ideal|| 1|| 2|| 3|| 4|| 5|| 6|| 7|| 8|| 9|| 10|| 11|| 12|| 13|| 14
|-
| Jumlah aktual|| style="background-color: gainsboro"|0||style="background-color: gainsboro"|1|| 3|| 4|| 5|| 6|| 7|| style="background-color: gainsboro"|7|| 9|| 10|| 11|| 12|| 13|| 14
|-
|'''Periode 7''' || '''Ac''' || '''Th'''|| '''Pa'''|| '''U'''|| '''Np'''|| '''Pu'''|| '''Am'''|| '''Cm'''|| '''Bk'''|| '''Cf'''|| '''Es'''|| '''Fm'''|| '''Md'''|| '''No'''
|-
| Jumlah aktual|| style="background-color: gainsboro"|0||style="background-color: gainsboro"|0||style="background-color: gainsboro"| 2||style="background-color: gainsboro"| 3||style="background-color: gainsboro"| 4|| 6|| 7||style="background-color: gainsboro"| 7|| 9|| 10|| 11|| 12|| 13|| 14
|}
 
Untuk jumlah elektron-f ideal pada Tabel 1 lihat: {{cite|last= Newell|first= S.B.|year= 1977|title= 'Chemistry: An Introduction|location= Boston|publisher= Little, Brown and Company|page= 196}}. Untuk Tabel 2 lihat: {{cite|author= Brown et.al.|year= 2009|title= Chemistry: The Central Science|edition= 11th|location= Upper Saddle River, New Jersey|publisher= Pearson Education|pages= 207, 208–210}}. Dalam kedua kasus perhitungannya adalah tetap dengan [[konfigurasi elektron|konfigurasi keadaan dasar]] ideal untuk unsur blok-f adalah [Gas mulia](n–2)''f''&thinsp;<sup>x</sup>ns<sup>2</sup> dengan n = nomor periode dan x = bilangan bulat dari 1 hingga 14. Lihat: {{cite|author= Rouvray D.H.|year= 2015|section= The Surprising Periodic Table: Ten Remarkable Facts|editor= B. Hargittai & I. Hargittai|title=Culture of Chemistry: The Best Articles on the Human Side of 20th-Century Chemistry from the Archives of the Chemical Intelligencer|location= New York|publisher= Springer Science+Business Media|pages= 183–193 (190)}}.</ref> Berbeda dengan varian tipe III, tidak ada ambiguitas pada komposisi golongan 3.
 
=== Struktur alternatif ===
{{Utama|Tabel periodik alternatif}}
[[Berkas:32-column periodic table-a.png|650px|jmpl|Tabel periodik 32 kolom]]
 
Terdapat banyak tabel periodik dengan struktur yang lain daripada bentuk standarnya. Selama 100 tahun kehadiran tabel Mendeleev sejak 1869, ia telah memperkirakan bahwa sekitar 700 versi tabel periodik yang berbeda akan dipublikasikan.<ref name=":9">Scerri 2007, p. 20</ref> Sama seperti variasi segi empatnya, format tabel periodik lainnya juga bermunculan, misalnya,<ref group="n">Lihat ''[http://www.meta-synthesis.com/webbook//35_pt/pt_database.php The Internet database of periodic tables]'' untuk melihat varian-varian ini.</ref> bentuk sirkuler, kubus, silinder, edifisial (seperti gedung), heliks, ''[[:En:wikt:lemniscate|lemniscate]]'', prisma oktagonal, piramida, terpisah, sferis, spiral, dan segitiga. Alternatif-alternatif semacam ini sering kali dikembangkan untuk menyoroti atau menekankan sifat-sifat fisika atau kimia unsur-unsur yang tidak dapat disajikan dalam tabel periodik tradisional.<ref name=":9" />
 
Struktur alternatif yang populer<ref>{{Cite|last1 = Emsely|first1 = J|last2 = Sharp|first2 = R|date = 21 June 2010|title = The periodic table: Top of the charts|journal = The Independent}}</ref> adalah versi Theodor Benfey (1960). Unsur-unsur disusun dalam spiral kontinu, dengan hidrogen berada di pusat spiral dan logam transisi, lantanida, serta aktinida berada pada semenanjungnya.<ref>{{Cite|last = Seaborg|first = Glenn|year = 1964|title = Plutonium: The Ornery Element|journal = Chemistry|volume = 37|issue = 6|page = 14}}</ref>
 
[[Berkas:Elementspiral_(polyatomic)-id.svg|kiri|jmpl|Tabel periodik spiral versi Theodor Benfey]]
 
Kebanyakan tabel periodik adalah dua dimensi;<ref name=emsley/> namun, tabel tiga dimensi telah dikenal setidaknya sejak 1862 (sebelum tabel dua dimensi Mandeleev tahun 1869). Contoh terkini antara lain Klasifikasi Periodik versi Courtines (1925),<ref>Mark R. Leach. "[http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=65 1925 Courtines' Periodic Classification]"</ref> Sistem Lamina Wringley (1949),<ref>Mark R. Leach. "[http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=295 1949 Wringley's Lamina System]". </ref> Heliks Periodik [[Paul-Antoine Giguère|Giguère]] (1965)<ref>{{Cite|last1 = Mazurs|first1 = E.G.|year = 1974|title = Graphical Representations of the Periodic System During One Hundred Years|location = Alabama|publisher = University of Alabama Press|page = 111|isbn = 978-0-8173-3200-6}}</ref><ref group="n">Penggambaran animasi tabel periodik Giguère yang banyak beredar di internet (termasuk [http://101-365.com/periodic/giguere.html dari sini]) digambarkan secara salah, karena tidak memasukkan hidrogen dan helium. Giguère meletakkan hidrogen, di atas litium, dan helium di atas berilium. Lihat: Giguère P.A. (1966). "The "new look" for the periodic system". ''Chemistry in Canada'' '''18''' (12): 36–39 (see p. 37).</ref> dan Pohon Periodik Dufour (1996).<ref>Mark R. Leach. "[http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=39 1996 Dufour's Periodic Tree]"</ref> Selangkah lebih maju, Tabel Periodik Fisikawan Stowe (1989)<ref>Mark R. Leach. "[http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=38 1989 Physicist's Periodic Table by Timothy Stowe]"</ref> telah dijelaskan sebagai tabel empat dimensi (mempunyai tiga dimensi spasial dan satu dimensi warna).<ref>{{Cite|last1 = Bradley|first1 = David|date = 20 July 2011|title = At last, a definitive periodic table?|magazine = ChemViews Magazine|doi = 10.1002/chemv.201000107}}</ref>
 
Beragam bentuk tabel periodik dapat dianggap sebagai peletakan dasar kontinum kimia-fisika.<ref>Scerri 2007, pp. 285‒86</ref> Menjelang akhir kontinum kimia, dapat dijumpai, misalnya, Tabel Periodik versi kimiawan anorganik 'bandel'<ref>Scerri 2007, p. 285</ref> Rayner-Canham (2002),<ref>Mark R. Leach. "[http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=429 2002 Inorganic Chemist's Periodic Table]".</ref> yang menekankan kecenderungan dan pola, serta sifat dan hubungan kimia yang tidak umum. Menjelang akhir kontinum fisika, muncul Tabel Periodik Kidal Janet (1928). Versi ini memiliki struktur yang menunjukkan hubungan erat dengan urutan pengisian kulit elektron dengan mekanika kuantum.<ref>{{Cite|last = Scerri|first = Eric|year = 2008|title = The role of triads in the evolution of the periodic table: Past and present|journal = Journal of Chemical Education|volume = 85|issue = 4|pages = 585–89 (see p.589)|bibcode = 2008JChEd..85..585S|doi = 10.1021/ed085p585}}</ref> Di tengah-tengah kontinum adalah berbagai variasi bentuk umum atau standar tabel periodik. Hal ini dianggap sebagai ungkapan tren empiris yang lebih baik dalam hal keadaan fisik, konduktivitas listrik dan termal, serta bilangan oksidasi, dan sifat-sifat lainnya dengan mudah disimpulkan dari teknik tradisional laboratorium kimia.<ref>{{Cite|last1 = Bent|first1 = H.A.|last2 = Weinhold|first2 = F.|year = 2007|title = Supporting information: News from the periodic table: An introduction to "Periodicity symbols, tables, and models for higher-order valency and donor–acceptor kinships"|journal = Journal of Chemical Education|volume = 84|issue = 7|pages = 3–4|doi = 10.1021/ed084p1145}}</ref>
 
{{Janet left-step periodic table (with shell filling sequence)}}
 
== Pertanyaan terbuka dan kontroversi ==
=== Unsur yang tidak diketahui sifat kimianya ===
Meskipun semua unsur hingga [[oganesson]] telah ditemukan, untuk unsur-unsur di atas [[hassium]] (unsur 108), hanya [[copernicium]] (unsur 112) dan [[flerovium]] (unsur 114) yang telah diketahui sifat kimianya. Unsur lainnya dapat berperilaku secara berbeda dari apa yang diprediksi secara ekstrapolasi, karena efek [[Kimia kuantum relativistik|relativistik]]. Misalnya, flerovium diprediksi menunjukkan sifat-sifat seperti gas mulia, meskipun terletak dalam [[golongan karbon]].<ref>{{cite|last=Schändel|first=Matthias|year=2003|title=The Chemistry of Superheavy Elements|location=Dordrecht|publisher=Kluwer Academic Publishers|page=277|isbn= 1-4020-1250-0}}</ref> Percobaan terkini telah membuktikan bahwa, flerovium memiliki sifat kimia seperti timbal, sebagaimana diperkirakan dari posisinya dalam tabel periodik.<ref>Sceri 2011, pp. 142-143</ref>
 
=== Pengembangan tabel periodik ===
{{Utama|Tabel periodik perluasan}}
<div style="float: right; margin: 1px; font-size:85%;">
{{Periodic table (micro)|number=120|caption=B. Tabel periodik pengembangan versi Fricke hingga unsur 184<ref name="Fricke">{{cite journal |last1=Fricke |first1=B. |last2=Greiner |first2=W. |last3=Waber |first3=J. T. |year=1971 |title=The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements |journal=Theoretica chimica acta |volume=21 |issue=3 |pages=235–260 |publisher=Springer-Verlag |doi=10.1007/BF01172015 |url=http://link.springer.com/article/10.1007%2FBF01172015?LI=true# |accessdate=28 November 2012}}</ref>}}
</div>
 
Belum jelas apakah unsur-unsur baru akan mengikuti pola yang telah ada pada tabel periodik saat ini sebagai [[Unsur periode 8|periode 8]], atau memerlukan penyesuaian lebih lanjut. [[Glenn T. Seaborg|Seaborg]] memperkirakan periode kedelapan untuk mengikuti pola yang telah ada, sehingga: (1) akan memasukkan dua unsur blok-s untuk unsur [[Ununennium|119]] dan [[Unbinilium|120]], (2) ada blok baru yaitu [[blok-g]] untuk 18 unsur berikutnya, dan (3) 30 unsur tambahan melanjutkan blok-f, -d, dan -p saat ini.<ref>{{Cite|last = Frazier|first = K.|year = 1978|title = Superheavy Elements|journal = Science News|volume = 113|issue = 15|pages = 236–238|doi = 10.2307/3963006|jstor = 3963006}}</ref> Berita terkini, fisikawan seperti [[Pekka Pyykkö]] telah membuat teori bahwa unsur-unsur tambahan ini tidak mengikuti aturan atau [[kaidah Madelung]], yang memprediksikan bagaimana kulit elektron diisi dan oleh sebab itu akan mempengaruhi tampilan tabel periodik saat ini.<ref>{{Cite|last = Pyykkö|first = Pekka|year = 2011|title = A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions|journal = Physical Chemistry Chemical Physics|volume = 13|issue = 1|pages = 161–168|bibcode = 2011PCCP...13..161P|doi = 10.1039/c0cp01575j|pmid = 20967377}}</ref>
 
=== Prediksi unsur dengan nomor atom terbesar ===
Jumlah unsur yang mungkin belum diketahui. Perkiraan awal yang dibuat oleh Elliot Adams pada tahun 1911, berdasarkan penyusunan unsur-unsur dalam masing-masing baris tabel periodik adalah: unsur dengan berat atom lebih besar daripada 256± (yang mungkin terletak di antara unsur 99 dan 100 untuk istilah saat ini) tidak mungkin ada.<ref>{{Cite|last = Elliot|first = Q.A.|year = 1911|title = A modification of the periodic table|journal = Journal of the American Chemical Society|volume = 33|issue = 5|pages = 684–688 (688)|doi = 10.1021/ja02218a004}}</ref> Perkiraan teranyar adalah tabel periodik mungkin segera berakhir setelah [[pulau stabilitas]],<ref>{{Cite|author = Glenn Seaborg|year = c. 2006|title = transuranium element (chemical element)|magazine = Encyclopædia Britannica.|url = http://www.britannica.com/EBchecked/topic/603220/transuranium-element}}</ref> yang diperkirakan berpusat di sekitar [[Unbiheksium|unsur 126]], karena pengembangan tabel nuklida dan periodik dibatasi oleh [[Garis tetes nuklir|garis tetes]] proton dan neutron.<ref>{{Cite|last1 = Cwiok|first1 = S|last2 = Heenen|first2 = P.H.|last3 = Nazarewicz|first3 = W.|year = 2005|title = Shape coexistence and triaxiality in the superheavy nuclei|journal = Nature|volume = 433|issue = 7027|pages = 705–9|bibcode = 2005Natur.433..705C|doi = 10.1038/nature03336|pmid = 15716943}}</ref> Prediksi lain berakhirnya tabel periodik berkisar pada unsur 128 oleh [[John Emsley]],<ref name="emsley" /> pada unsur 137 oleh [[Richard Feynman]],<ref>[http://www.rsc.org/chemistryworld/Issues/2010/November/ColumnThecrucible.asp Column: The crucible], Ball, Philip in Chemistry World, Royal Society of Chemistry, Nov. 2010</ref> dan pada unsur 155 oleh Albert Khazan.<ref name="emsley" /><ref group="n">Karol (2002, p. 63) berpendapat bahwa efek gravitasi akan menjadi signifikan ketika nomor atom semakin besar secara astronomis, dengan demikian mengatasi fenomena other ketakstabilan inti super-masif lainnya, dan bahwa bintang neutron (dengan nomor atom pada orde 10<sup>21</sup>) bisa dianggap sebagai unsur terberat yang dikenal di jagat raya. Lihat: {{Cite|last = Karol|first = P.J.|year = 2002|title = The Mendeleev–Seaborg periodic table: Through Z = 1138 and beyond|journal = Journal of Chemical Education|volume = 79|issue = 1|pages = 60–63}}</ref>
 
==== Model Bohr ====
[[Model Bohr]] menunjukkan kesulitan untuk atom-atom dengan nomor atom lebih besar daripada 137, karena unsur apapun dengan nomor atom lebih dari 137 akan membutuhkan elektron-elektron 1s nya untuk bergerak melebihi [[kecepatan cahaya]], ''c''.<ref>{{Cite|last1 = Eisberg|first1 = R.|last2 = Resnick|first2 = R.|year = 1985|title = Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles|publisher = [[John Wiley & Sons|Wiley]]}}</ref> Oleh karena itu, model non-relativistik Bohr tidak akurat jika diterapkan untuk unsur-unsur semacam ini.
 
==== Persamaan relativistik Dirac ====
Persamaan [[Teori relativitas|relativistik]] Dirac menghadapi masalah untuk unsur-unsur lebih dari 137 proton. Untuk unsur semacam ini, fungsi gelombang kondisi dasar Dirac adalah berosilasi, dan tidak ada celah antara spektra energi positif dan negatif, seperti dalam [[paradoks Klein]].<ref>{{Cite|last1 = Bjorken|first1 = J.D.|last2 = Drell|first2 = S.D.|year = 1964|title = Relativistic Quantum Mechanics|publisher = [[McGraw-Hill]]}}</ref> Kalkulasi yang lebih akurat memperhitungkan pengaruh ukuran terbatas pada inti atom yang menandakan bahwa ikatan energi pertama melebihi batasan yang dimungkinkan untuk unsur-unsur lebih dari 173 proton. Untuk unsur-unsur yang lebih berat, jika orbital terdalam (1s) tidak terisi, medan listrik inti akan menarik elektron keluar ruang hampa, yang menghasilkan [[Emisi positron|emisi positron spontan]].<ref>{{Cite|last1 = Greiner|first1 = W.|last2 = Schramm|first2 = S.|year = 2008|journal = |volume = 76|pages = 509., and references therein|title = [[American Journal of Physics]]}}</ref> Meski demikian, hal ini tidak terjadi jika orbital terdalam terisi, sehingga unsur 173 bukanlah akhir dari tabel periodik.<ref>{{Cite|last = Ball|first = Philip|date = November 2010|title = Would Element 137 Really Spell the End of the Periodic Table? Philip Ball Examines the Evidence|publisher = [[Royal Society of Chemistry]]|url = http://www.rsc.org/chemistryworld/Issues/2010/November/ColumnThecrucible.asp}}</ref>
 
=== Penempatan hidrogen dan helium ===
Jika mengikuti konfigurasi elektron, [[hidrogen]] (konfigurasi elektron 1s<sup>1</sup>) dan [[helium]] (1s<sup>2</sup>) seharusnya terletak di golongan 1 dan 2, di atas [[litium]] ([He]2s<sup>1</sup>) dan [[berilium]] ([He]2s<sup>2</sup>).<ref name=":10" /> Namun, penempatan tersebut jarang digunakan di luar konteks konfigurasi elektron: Ketika [[gas mulia]] (yang kemudian disebut "gas inert") pertama kali diketemukan sekitar tahun 1900, mereka dikenal sebagai "golongan 0", merefleksikan tidak adanya reaktivitas kimia unsur-unsur ini yang diketahui pada saat itu, dan helium diletakkan di puncak golongan, karena memiliki ke-inert-an yang sama dengan seluruh golongan tersebut. Oleh karena golongan berubah penomoran formalnya, kebanyakan penulis tetap meletakkan helium tepat di atas [[neon]], dalam golongan 18; salah satunya adalah tabel [[IUPAC]] yang berlaku saat ini.<ref>{{Cite|author1 = IUPAC|date = 2013-05-01|title = IUPAC Periodic Table of the Elements|journal = iupac.org.|publisher = IUPAC|url = http://www.iupac.org/fileadmin/user_upload/news/IUPAC_Periodic_Table-1May13.pdf}}</ref>
 
Sifat-sifat kimia hidrogen tidak terlalu dekat dengan logam-logam alkali, yang menempati golongan 1, dan berdasarkan hal tersebut, terkadang hidrogen diletakkan di tempat lain: alternatif yang paling umum adalah di golongan 17; salah satu faktor pertimbangannya adalah sifat hidrogen yang nonlogam monovalen, dan bahwa fluor (unsur yang terletak di puncak golongan 17) juga nonlogam monovalen. Terkadang, untuk menunjukkan bahwa hidrogen memiliki sifat-sifat baik seperti logam alkali maupun halogen, hidrogen ditampilkan dalam dua kolom sekaligus.<ref>{{Cite|last = Seaborg|first = Glenn Theodore|year = 1945|title = The chemical and radioactive properties of the heavy elements|newspaper = Chemical English Newspaper|volume = 23|issue = 23|pages = 2190–2193}}</ref> Cara penyajian lain adalah meletakkan hidrogen di atsa karbon dalam golongan 14: dengan meletakkannya sedemikian, sangat cocok dengan kecenderungan kenaikan nilai potensial ionisasi dan afinitas elektron, dan tidak terlalu menyimpang dari tren elektronegativitas.<ref>{{Cite|last = Cronyn|first = Marshall W.|date = August 2003|title = The Proper Place for Hydrogen in the Periodic Table|journal = Journal of Chemical Education|volume = 80|issue = 8|pages = 947–951|bibcode = 2003JChEd..80..947C|doi = 10.1021/ed080p947}}</ref> Terakhir, hidrogen kadang diletakkan terpisah dari golongan manapun; hal ini berdasarkan sifat-sifat hidrogen yang sangat berbeda dari golongan manapun: tidak seperti hidrogen, unsur golongan 1 lainnya menunjukkan sifat yang sangat logam; unsur-unsur golongan 17 umumnya membentuk garam (oleh sebab itu ada istilah "halogen"); unsur-unsur golongan lainnya menunjukkan sifat kimia multivalen. Unsur periode 1 lainnya, helium, terkadang juga diletakkan terpisah dari golongan manapun.<ref>Greenwood, throughout the book</ref> Sifat-sifat yang membedakan helium dengan gas mulia lainnya (meskipun sifat inert helium sangat dekat dengan neon dan argon<ref>{{Cite|last = Lewars|first = Errol G|date = 2008-12-05|title = Modeling Marvels: Computational Anticipation of Novel Molecules|publisher = Springer Science & Business Media|pages = 69–71|isbn = 9781402069734}}</ref>) adalah bahwa dalam kulit elektron tertutupnya, helium hanya memiliki dua elektron pada orbital terluarnya, sementara gas mulia lainnya memiliki delapan elektron.
 
=== Golongan yang termasuk dalam logam transisi ===
Definisi [[logam transisi]], seperti diberikan oleh IUPAC, adalah unsur yang atomnya mempunyai sub-kulit d tak lengkap, atau yang dapat mengalami kenaikan tingkat oksidasi menjadi kation sehingga sub-kulit d menjadi tak lengkap.<ref>{{GoldBookRef|title = transition element}}</ref> Berdasarkan definisi ini, seluruh unsur dalam golongan 3–11 adalah logam transisi. Definisi IUPAC menyebabkan golongan 12, antara lain seng, kadmium dan raksa, harus keluar dari kategori logam transisi.
 
Beberapa kimiawan memperlakukan kategori "unsur [[blok-d]]" dan "logam transisi" secara bergantian, sehingga golongan 3–12 termasuk dalam logam transisi. Dalam hal ini, unsur-unsur golongan 12 diperlakukan sebagai kasus khusus dari logam transisi yang mana elektron-elektron d nya tidak biasa terlibat dalam ikatan kimia. Penemuan baru-baru ini yang mengungkapkan raksa dapat menggunakan elektron d nya dalam pembentukan [[raksa(IV) fluorida]] (HgF<sub>4</sub>) telah mendorong beberapa komentator untuk menyarankan agar raksa dapat diterima sebagai logam transisi.<ref>{{Cite|author1 = Xuefang Wang|author2 = Lester Andrews|author3 = Sebastian Riedel|author4 = Martin Kaupp|year = 2007|title = Mercury Is a Transition Metal: The First Experimental Evidence for HgF4|journal = Angew. Chem. Int. Ed.|volume = 46|issue = 44|pages = 8371–8375|doi = 10.1002/anie.200703710|pmid = 17899620}}</ref> Komentator lain, seperti Jensen,<ref name=":11">{{Cite|author1 = William B. Jensen|year = 2008|title = Is Mercury Now a Transition Element?|journal = J. Chem. Educ.|volume = 85|issue = 9|pages = 1182–1183|bibcode = 2008JChEd..85.1182J|doi = 10.1021/ed085p1182}}</ref> telah berargumentasi bahwa pembentukan senyawa seperti HgF<sub>4</sub> hanya dapat terjadi di bawah kondisi abnormal. Oleh karenanya, raksa tidak dapat diterima sebagai logam transisi berdasarkan interpretasi apapun dalam istilah makna ilmiah umum.<ref name=":11" />
 
Kimiawan lainnya lebih jauh mengeluarkan unsur-unsur golongan 3 dari definisi logam transisi. Mereka melakukannya berdasarkan bahwa unsur-unsur golongan 3 tidak membentuk ion apapun dengan kulit d sebagian terisi, dan oleh karenanya tidak menunjukkan karakteristik kimia logam transisi.<ref>{{Cite|last1 = Rayner-Canham|first1 = G|last2 = Overton|first2 = T.|title = Descriptive inorganic chemistry|edition = 4th|location = New York|publisher = W H Freeman|pages = 484–485|isbn = 0-7167-8963-9}}</ref> Dalam kasus ini, hanya golongan 4–11 yang diterima sebagai logam transisi.
 
=== Unsur-unsur periode 6 dan 7 pada golongan 3 ===
 
Meskipun skandium dan itrium adalah dua unsur pertama pada golongan 3 identitas dua unsur berikutnya belum dituntaskan. Mereka adalah lantanum dan aktinium; atau lutetium dan lawrencium. Ada argumen kimia dan fisika yang kuat yang mendukung penyusunan terakhir<ref>{{cite|last1=Thyssen|first1=P.|last2=Binnemanns|first2=K|year=2011|chapter=1: Accommodation of the rare earths in the periodic table: A historical analysis|editor-last1=Gschneidner Jr.|editor-first1=K.A|editor-last2=Büzli|editor-first2=J-C.J.|editor-last3=Pecharsky|editor-first3=V.K.|title=Handbook on the Physics and Chemistry of Rare Earths|volume=41|location=Amsterdam|publisher=Elsevier|pages=80–81|isbn=978-0-444-53590-0}}</ref><ref>{{cite|last1=Keeler|first1=J.|last2=Wothers|first2=P.|year=2014|title=Chemical Structure and Reactivity: An Integrated Approach|location=Oxford|publisher=Oxford University|page=259|isbn=978-0-19-9604135}}</ref> tetapi tidak semua penulis telah diyakinkan.<ref name="finally">{{cite|last = Scerri|first = E.|year = 2012|title = Mendeleev's Periodic Table Is Finally Completed and What To Do about Group 3?|journal = Chemistry International|volume = 34|issue = 4|url = http://www.iupac.org/publications/ci/2012/3404/ud.html}}</ref> Kebanyakan kimiawan tidak menyadari bahwa ada kontroversi.<ref>{{cite|last = Castelvecchi|first = Davide|date = 8 April 2015|title = Exotic atom struggles to find its place in the periodic table|journal = Nature News|url = http://www.nature.com/news/exotic-atom-struggles-to-find-its-place-in-the-periodic-table-1.17275}}</ref>
<div style="float: right; margin: 1px; font-size:85%;">
{{Periodic table (32 columns, micro)/Sc-Y-La-Ac/sandbox|mark=Sc, Y, La, Ac}}
</div>
Lantanum dan aktinium secara tradisional digambarkan sebagai anggota golongan 3.<ref>{{cite|last=Emsley|first=J.|year=2011|title=Nature's Building Blocks|edition=new|location=Oxford|publisher=Oxford University|page=651|isbn=978-0-19-960563-7}}</ref><ref>See, for example: "[http://www.rsc.org/periodic-table Periodic Table]". Royal Society of Chemistry.</ref>
 
Telah dikemukakan bahwa tata letak ini berasal dari tahun 1940-an, dengan munculnya tabel periodik berdasarkan konfigurasi elektron unsur-unsurnya dan gagasan elektron pembeda. Konfigurasi sesium, barium dan lantanum adalah [Xe]6s<sup>1</sup>, [Xe]6s<sup>2</sup> dan [Xe]5d<sup>1</sup>6s<sup>2</sup>. Lantanum memiliki elektron pembeda 5''d'' dan ini memapankannya "pantas berada dalam golongan 3 sebagai anggota pertama blok-d untuk periode 6."<ref name="Jensen82">{{cite|author=William B. Jensen|year=1982|title=The Positions of Lanthanum (Actinium) and Lutetium (Lawrencium) in the Periodic Table|journal=J. Chem. Educ.|volume=59|issue=8|pages=634–636|doi=10.1021/ed059p634}}</ref> Satu set konfigurasi elektron yang konsisten selanjutnya terlihat dalam golongan 3: skandium [Ar] 3d<sup>1</sup>4s<sup>2</sup>, itrium [Kr] 4d<sup>1</sup>5s<sup>2</sup> dan lantanum [Xe] 5d<sup>1</sup>6s<sup>2</sup>. Masih dalam periode 6, iterbium memiliki konfigurasi elektron [Xe]4f<sup>13</sup>5d<sup>1</sup>6s<sup>2</sup> dan lutetium [Xe]4f<sup>14</sup>5d<sup>1</sup>6s<sup>2</sup>, "menghasilkan elektron pembeda 4''f'' untuk lutetium dan menegaskan ia sebagai anggota terakhir blok-f untuk periode 6."<ref name="Jensen82"/>
<div style="float: right; margin: 1px; font-size:85%;">
{{Periodic table (32 columns, micro)|mark=Sc, Y, Lu, Lr}}
</div>
Pada tabel lain, lutetium dan lawrencium adalah anggota terakhir dari golongan 3.<ref>See, for example: {{Cite|last1 = Brown|first1 = T.L.|last2 = LeMay Jr.|first2 = H.E.|last3 = Bursten|first3 = B.E.|last4 = Murphy|first4 = C.J.|year = 2009|title = Chemistry: The Central Science|edition = 11th|location = Upper Saddle River, New Jersey|publisher = Pearson Education|page = endpapers|isbn = 0-13-235848-4}}</ref> Telah diketahui sejak awal abad ke-20 bahwa, "itrium dan (untuk tingkat yang lebih rendah) skandium memiliki sifat kimia yang lebih mendekati lutetium dan unsur [[Logam tanah jarang|tanah jarang]] lainnya [yaitu lantanida] daripada ke lantanum."<ref name="Jensen82" /> Dengan alasan itu, beberapa ahli kimia pada tahun 1920 dan 1930an lebih meimilih lutetium untuk dimasukkan ke dalam golongan 3 daripada lantanum. Penelitian [[spektroskopi elektron|spektroskopik]] terkini menemukan bahwa konfigurasi elektron iterbium ternyata [Xe]4f<sup>14</sup>6s<sup>2</sup>. Ini berarti bahwa iterbium dan lutetium—dengan konfigurasi [Xe]4f<sup>14</sup>5d<sup>1</sup>6s<sup>2</sup>—keduanya memiliki 14 elektron ''f'', "memiliki elektron pembeda ''d'' dan bukan ''f''" untuk lutetium dan membuatnya "kandidat yang setara" dengan [Xe]5d<sup>1</sup>6s<sup>2</sup> lantanum, untuk golongan 3 tabel periodik pada posisi di bawah itrium.<ref name="Jensen82" /> Beberapa fisikawan pada tahun 1950an dan 60an lebih memilih lutetium, dalam hal perbandingan beberapa sifat fisika dengan yang dimiliki oleh lantanum.<ref name="Jensen82" /> Pengaturan ini, di mana lantanum adalah anggota pertama dari blok-''f'', dibantah oleh beberapa penulis karena lantanum tidak memiliki satupun elektron ''f''. Namun, telah ada bantahan bahwa ini tidak perlu dikhawatirkan mengingat adanya anomali lain dalam tabel periodik—torium, misalnya, tidak memiliki elektron ''f'' tetapi merupakan bagian dari blok-''f''.<ref>{{Cite|last = Scerri|first = E|year = 2015|title = Five ideas in chemical education that must die - part five|journal = educationinchemistryblog|publisher = Royal Society of Chemistry|accessdate = Sep 19, 2015|url = http://www.rsc.org/blogs/eic/2015/09/periodic-table-group-3|quote = It is high time that the idea of group 3 consisting of Sc, Y, La and Ac is abandoned}}</ref> Adapun lawrencium, konfigurasi elektron yang dikonfirmasi pada tahun 2015 adalah [Rn]5f<sup>14</sup>7s<sup>2</sup>7p<sup>1</sup>. Konfigurasi yang mewakili anomali lain tabel periodik, terlepas dari apakah lawrensium terletak blok-''f'' atau blok-''d'', karena posisi posisi blok-''p'' yang paling memungkinkan telah "dipesan" untuk [[ununtrium]] dengan perkiraan konfigurasi elektron [Rn]5f<sup>14</sup>6d<sup>10</sup>7s<sup>2</sup>7p<sup>1</sup>.<ref>{{Cite|last = Jensen|first = W.B.|year = 2015|title = Some Comments on the Position of Lawrencium in the Periodic Table|url = http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf}}</ref>
 
Beberapa tabel, termasuk tabel pada web [[IUPAC]],<ref>"[http://old.iupac.org/reports/periodic_table/ Periodic Table of the Elements]". International Union of Pure and Applied Chemistry.</ref><ref group="n">Meskipun tabel bentuk ini terkadang dirujuk sebagai tabel periodik "yang diakui" atau "resmi" IUPAC, "IUPAC belum menyetujui semua bentuk spesifik tabel periodik…" Lihat: {{Cite|last = Leigh|first = G.J.|date = January–February 2009|title = Periodic Tables and IUPAC|journal = Chemistry International|volume = 31|issue = 1|url = http://www.iupac.org/publications/ci/2009/3101/1_leigh.html}}</ref> menambahkan catatan kaki untuk dua posisi di bawah skandium dan itrium, dan menampilkan keduanya, lantanum dan lutetium, serta aktinium dan lawrencium sebagai bagian dari unsur deret lantanida dan aktinida. Pengaturan ini menekankan kesamaan sifat-sifat kimia 15 unsur lantanida (La-Lu) lebih penting daripada argumentasi konfigurasi elektron. Unsur-unsur dalam deret aktinida memiliki perilaku yang lebih beragam. Unsur-unsur di awal deret menunjukkan beberapa kesamaan dengan logam transisi; aktinium dan selanjutnya lebih mirip lantanida.<ref>{{Cite|last = Owen|first = S.M.|year = 1991|title = A Guide to Modern Inorganic Chemistry|location = Harlow, Essex|publisher = Longman Scientific & Technical|page = 190|isbn = 0-58-206439-2}}</ref>
 
=== Bentuk optimal ===
Banyaknya bentuk tabel periodik yang berbeda memicu pertanyaan: adakah bentuk tabel periodik yang optimal atau definitif (pasti)? Jawaban atas pertanyaan ini adalah bergantung pada bagaimana melihat kebenaran periodisitas kimia yang muncul pada unsur-unsur tersebut, apakah kebenaran mutlak, atau hanya interpretasi manusia yang disesuaikan dengan kebutuhan, keyakinan dan selera pengamat. Dasar obyektif periodisitas kimia akan menjawab pertanyaan tentang lokasi hidrogen dan helium, serta komposisi golongan 3. Kebenaran mendasar semacam ini, jika ada, kemungkinan belum ditemukan. Tanpa kebenaran mendasar tersebut, banyaknya perbedaan bentuk tabel periodik dapat dianggap sebagai variasi tema periodisitas kimia, yang masing-masing mengeksplorasi dan memberikan penekanan pada aspek, sifat, perspektif dan hubungan antar unsur yang berbeda.<ref group="n">Scerri, salah satu otorita terkenal dalam sejarah tabel periodik (Sella 2013), dihargai karena konsep bentuk optimal tabel periodik tetapi akhir-akhir ini berubah pikiran dan sekarang mendukung nilai-nilai pluralitas tabel periodik. Lihat: {{Cite|last = Sella|first = A.|year = 2013|title = An elementary history lesson|journal = New Scientist|volume = 2929|issue = 51|url = http://www.newscientist.com/article/mg21929291.200-an-elementary-history-lesson.html#.Uiear8saySM}} dan {{Cite|last = Scerri|first = E.|year = 2013|title = Is there an optimal periodic table and other bigger questions in the philosophy of science|url = http://ericscerri23.blogspot.com/}}</ref> Adanya tabel periodik resmi versi standard atau menengah dan panjang diperkirakan adalah hasil dari pengaturan tata letak dengan keseimbangan fitur yang baik dalam arti mudah dibuat dan berukuran layak, serta dapat menggambarkan urutan atom dan tren periodik.<ref name=":12" /><ref>{{Cite|last = Francl|first = Michelle|date = May 2009|title = Table manners|journal = Nature Chemistry|volume = 1|issue = 2|pages = 97–98|bibcode = 2009NatCh...1...97F. doi:10.1038/nchem.183|pmid = 21378810}}</ref>
 
== Lihat pula ==
{{portalkimiaPortal|Kimia}}
{{Wikipedia books|Tabel periodik}}
{{div col|2}}
* [[Golongan tabel periodik]]
* [[Periode tabel periodik]]
Baris 108 ⟶ 303:
* [[Tabel isotop (lengkap)]]
* [[Tabel isotop (terbagi)]]
* [[Penemuan unsur kimia|Penemuan unsur-unsur kimia]]
* [[Kelimpahan unsur-unsur kimia]]
* [[Lagu unsur]]
* [[Nama unsur sistematik]] [[IUPAC]].
* [[Tabel Periodik Cosmochemical dari Unsur-Unsur dalam Tata Surya]]
* [[Sejarah Nama Subkulit s,p,d,f]]
* [[Tabel konfigurasi elektron]]
* [[Kolektor unsur]]
* [[Daftar unsur kimia]]
* [[Daftar artikel yang berhubungan dengan tabel periodik]]
* [[Tabel nuklida]]
{{div col end}}
 
== PranalaCatatan luarkaki ==
{{reflist|2|group="n"}}
 
== Referensi ==
{{Reflist|30em}}
 
== Daftar pustaka ==
* {{cite|last=Mazurs|first=E.G.|year=1974|title=Graphical Representations of the Periodic System During One Hundred Years|location=Alabama|publisher=University of Alabama Press|isbn=0-8173-3200-6}}
* {{cite|last=Bouma|first=J.|year=1989|title=An Application-Oriented Periodic Table of the Elements|journal=J. Chem. Ed.|volume=66|page=741|issue=9|doi=10.1021/ed066p741}}
 
== Pranala luar ==
{{Sisterlinks}}
{{div col|2}}
* {{id}} [http://www.chem-is-try.org/?sect=tabel Tabel periodik (Situs Web Kimia Indonesia)]
* {{en}} [http://www.iupac.org/reportshighlights/periodic_table Theperiodic-table-of-the-elements.html IUPAC periodicPeriodic tableTable of the Elements]
* {{en}} "''[http://www.wou.edu/las/physci/ch412/alttable.htm Presentation forms of the periodic table]''". Western Oregon University.
* {{en}} "''[http://www.wou.edu/las/physci/ch412/perhist.htm A Brief History of the Development of Periodic Table]''". Western Oregon University.
Baris 127 ⟶ 339:
* {{en}} Holler, F. James, and John P. Selegue, "''[http://www.uky.edu/Projects/Chemcomics/ Periodic Table of Comic Books]''". Department of Chemistry, University of Kentucky. 1996-2002.
* {{en}} Heilman, Chris, "''[http://chemlab.pc.maricopa.edu/periodic/default.html The Pictorial Periodic Table]''". (Includes alternate styles: Stowe, Benfey, Zmaczynski, Giguere, Tarantola, Filling, Mendeleev)
* {{en}} "''[http://pearl1.lanl.gov/periodic/default.htm Periodic table]''". Los Alamos National Laboratory's Chemistry Division.
* {{en}} "''[http://www.phys.ufl.edu/fermisurface/periodic_table.html Periodic Table of the Fermi Surfaces of Elemental Solids]''". [http://www.phys.ufl.edu/fermisurface/ The Fermi Surface Database]
* {{en}} "''[http://www.nyu.edu/cgi-bin/cgiwrap/aj39/NMRmap.cgi Interactive NMR Frequency Map]''". Texas A&M.
* {{en}} "''[httpshttp://www.science.co.il/elements/PTelements.asp Periodic Table Elements]''". Israel Science and Technology Directory. 1999-20172004. (sorted by physical characteristics)
* {{en}} Barthelmy, David, "''[http://webmineral.com/chemical.shtml Periodic table]"'' Mineralogy Database. (mineral emphasis)
* {{en}} {{cite|author=Gray, Theodore, "''[|url=http://www.theodoregray.com/PeriodicTable/ |title=Wooden Periodic Table Table]''"|ref=Gray}} (with samples)
* {{en}} "''[http://www.dartmouth.edu/~chemlab/info/resources/p_table/Periodic.html Periodic table applet]''". Dartmouth College. ([[JavaBahasa programmingpemrograman languageJava|Java]])
* {{en}} Jacobs, Bob, "''[http://www.chemistrycoach.com/periodic_tables.htm Periodic Tables] (in case you were thinking that the Internet needed one more)''". The Chemistry Coach.
* {{en}} "''[http://periodictable.com/ PeriodicTable.com]''".
* {{en}} "''[http://www.egregoralfa.republika.pl/english/newtable.html New Periodic Table From Poland ]
{{div col end}}
 
{{Tabel periodik unsur kimia}}
{{Navbox tabel periodik}}
{{CabangKimia}}
{{kimia-stubartikel pilihan}}
 
[[Kategori:Tabel periodik| ]]
[[Kategori:Kimia]]
 
{{Link FA|lmo}}
{{Link GA|ja}}
{{Link FA|en}}