El Niño–Osilasi Selatan: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
RXerself (bicara | kontrib)
+ Sirkulasi Walker
RXerself (bicara | kontrib)
→‎Sirkulasi Walker: inist.fr -> Xie, 1998
Baris 15:
Sirkulasi Walker disebabkan oleh [[gaya gradien tekanan]] yang berasal dari satu [[area tekanan udara tinggi]] di wilayah timur Samudra Pasifik dan satu [[area tekanan udara rendah]] di wilayah Arkipelago [[Indonesia]]. Selama periode musim panas belahan Bumi utara, Sirkulasi Walker di wilayah tropis [[Samudra Hindia]] menyebabkan berhembusnya angin barat di permukaan sementara di Samudra Pasifik dan [[Samudra Atlantik|Atlantik]] berhembus angin timur. Suhu dari ketiga samudra tersebut pun menjadi tidak simetris. Wilayah khatulistiwa dari Samudra Pasifik dan Atlantik pun memiliki suhu permukaan yang dingin di bagian timur sementara di Samudra Hindia, air yang lebih dingin berada di bagian barat.<ref>{{cite web|url=http://www.bom.gov.au/watl/about-weather-and-climate/australian-climate-influences.shtml?bookmark=walkercirculation|title=The Walker Circulation|publisher=Commonwealth of Australia|author=Bureau of Meteorology|accessdate=2014-07-01}}</ref> Perubaan suhu permukaan tersebut terjadi juga bersamaan dengan perubahan dari posisi kedalaman [[termoklin]].<ref>{{cite journal|url=http://journals.ametsoc.org/doi/pdf/10.1175/2523.1|title=Relationship Between Sea Surface Temperature and Thermocline Depth in the Eastern Equatorial Pacific|author=Zelle, H., Appledoorn, G., Burgers, G., & van Oldenborgh, G. J.|journal=Journal of Physical Oceanography|volume=34|issue=3|pages=643–655|doi=10.1175/2523.1}}</ref>
 
Perubahan gerakan Sirkulasi Walker terjadi bersamaan dengan perubahan suhu permukaan. Perubahan tersebut dapat terjadi akibat faktor eksternal seperti perubahan musim dengan [[gerak semu Matahari]]. Perubahan gerakan Sirkulasi Walker juga dapt terjadi akibat hubungan timbal balik antara samudra dan atmosfer. Sebagai contoh, angin timur menyebabkan suhu permukaan laut di bagian timur mendingin. Wilayah timur yang semakin dingin membuat angin timur berhembus semakin kencang. Variasi kondisi angin timur tersebut memicu lebih banyak [[upwelling]] dan membuat termoklin di wilayah timur naik dan suhu permukaan pun semakin dingin yang meningkatkan efek pendinginan awal dari angin selatan sebelumnya. Keterikatan antara samudra dan atmosfer ini pertama kali diajukan oleh [[meteorologi|meteorolog]] [[Jacob Bjerknes]]. Dari sudut pandang [[oseanografi]], wilayah yang dingin di sekitar khatulistiwa tersebut disebabkan oleh angin timur. Jika iklim Bumi di sekitar khatulistiwa itu simetris, angin lintas khatulistiwa akan menghilang dan wilayah dingin akan lebih lemah dan memiliki struktur yang sangt berbeda daripada apa yang ada kini.<ref>{{cite webjournal|urllast=http://catXie|first=S.inist-P.fr/?aModele=afficheN&cpsidt|year=21543251998|title=Ocean-atmosphere interactionOcean–Atmosphere Interaction in the makingMaking of thetheWalker Walker circulationCirculation and equatorialEquatorial coldCold tongueTongue|publisherjournal=inist.frJournal of Climate|accessdatevolume=201511|issue=2|pages=189-201 |doi=10.1175/1520-200442(1998)011<0189:OAIITM>2.0.CO;2}}}</ref>
 
Sirkulasi Walker untuk periode selain El Niño berada sebagai angin timur di permukaan yang menggerakkan air laut dan udara yang dihangatkan oleh Matahari menuju ke barat. Upwelling pun terjadi di perairan [[Peru]] dan [[Ekuador]]. Air bersuhu rendah yang naik ke atas mengandung banyak nutrien yang kemudian meningkatkan populasi ikan.<ref name="Jennings">{{cite book|authors=Jennings, S., Kaiser, M.J., & Reynolds, J.D. |year=2001 |title=Marine Fisheries Ecology |location=Oxford |publisher=Blackwell Science |isbn=0-632-05098-5}}</ref> Wilayah khatulistiwa Samudra Pasifik bagian barat dicirikan oleh suhu airnya yang hangat, atmosfer yang basah, dan tekanan udara yang rendah. Kelembaban yang terakumulasi menimbulkan taifun dan badai petir. Samudra Pasifik pun lebih tinggi sekitar {{convert|60|cm|in}} di bagian barat akibat dari pergerakan ini.<ref>{{cite web |last=Pidwirny |first=M. |title=Chapter 7: Introduction to the Atmosphere |work=Fundamentals of Physical Geography |publisher=physicalgeography.net |date=2006-02-02 |url=http://www.physicalgeography.net/fundamentals/7z.html |accessdate=2006-12-30}}</ref><ref>{{cite web |title=Envisat watches for La Niña |publisher=BNSC |date=2011-01-09 |url=http://www.bnsc.gov.uk/content.aspx?nid=5989 |accessdate=2007-07-26 |archiveurl=https://web.archive.org/web/20080424113710/http://www.bnsc.gov.uk/content.aspx?nid=5989 |archivedate=2008-04-24}}</ref><ref>{{cite web |title=The Tropical Atmosphere Ocean Array: Gathering Data to Predict El Niño |publisher=NOAA |date=2007-01-08 |url=http://celebrating200years.noaa.gov/datasets/tropical/welcome.html |accessdate=2007-07-26}}</ref><ref>{{cite web|title=Annual Sea Level Data Summary Report July 2005 – June 2006 |work=The Australian Baseline Sea Level Monitoring Project |publisher=Bureau of Meteorology |url=http://www.bom.gov.au/fwo/IDO60202/IDO60202.2006.pdf |format=PDF |accessdate=2007-07-26 |archiveurl=https://web.archive.org/web/20070807235141/http://www.bom.gov.au/fwo/IDO60202/IDO60202.2006.pdf |archivedate=2007-08-07 }}</ref>