Transistor sambungan dwikutub: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Kenrick95Bot (bicara | kontrib)
k Bot: Penggantian teks otomatis (- tapi + tetapi)
HsfBot (bicara | kontrib)
k Bot: Perubahan kosmetika
Baris 20:
Daerah basis pada transistor harus dibuat tipis, sehingga pembawa tersebut dapat menyebar melewatinya dengan lebih cepat daripada umur pembawa minoritas semikonduktor untuk mengurangi bagian pembawa yang bergabung kembali sebelum mencapai pertemuan kolektor-basis. Untuk memastikannya, ketebalan basis dibuat jauh lebih rendah dari panjang penyebaran dari elektron. Pertemuan kolektor-basis dipanjar terbalik, jadi sedikit sekali injeksi elektron yang terjadi dari kolektor ke basis, tetapi elektron yang menyebar melalui basis menuju kolektor disapu menuju kolektor oleh medan pada pertemuan kolektor-basis.
=== Pengendalian tegangan, arus dan muatan ===
Arus kolektor-emitor dapat dipandang sebagai terkendali arus basis-emitor (kendali arus) atau tegangan basis-emitor (kendali tegangan). Pandangan tersebut berhubungan dengan hubungan arus-tegangan dari pertemuan basis-emitor, yang mana hanya merupakan kurva arus-tegangan eksponensial biasa dari diode pertemuan p-n.<ref name="hh">{{cite book|author=[[Paul Horowitz]] and [[Winfield Hill]]|title=[[The Art of Electronics]]|edition=2nd|year=1989|publisher=Cambridge University Press|isbn=9780521370950|url=http://books.google.com/books?id=bkOMDgwFA28C&pg=PA113&dq=bjt+charge+current+voltage+control+inauthor:horowitz+inauthor:hill&as_brr=0&ei=A33kRuT6Co3goAKF5pSqCw&sig=EmoHsk3zMEtvV1VYKR65A4I1SCM}}</ref>
Penjelasan fisika untuk arus kolektor adalah jumlah muatan pembawa minoritas pada daerah basis.<ref name=hh/><ref>{{cite book|title=Semiconductor Device Physics and Simulation|author=Juin Jei Liou and Jiann S. Yuan|publisher=Springer|year=1998|isbn=0306457245|url=http://books.google.com/books?id=y343FTN1TU0C&pg=PA166&dq=charge-controlled+bjt+physics&as_brr=0&ei=l9viRqilEIjopQL_i6WFDg&sig=vXciSaFRmNUmg3KIhmBX7DCiVOA}}</ref><ref>{{cite book|title=Transistor Manual|author=General Electric|edition=6th|year=1962|page=12}} "If the principle of space charge neutrality is used in the analysis of the transistor, it is evident that the collector current is controlled by means of the positive charge (hole concentration) in the base region. ... When a transistor is used at higher frequencies, the fundamental limitation is the time it takes the carriers to diffuse across the base region..." (same in 4th and 5th editions)</ref> Model mendetail dari kerja transistor, [[model Gummel–Poon]], menghitung distribusi dari muatan tersebut secara eksplisit untuk menjelaskan perilaku transistor dengan lebih tepat.<ref>{{cite book|title=Semiconductor Device Modeling with Spice|author=Paolo Antognetti and Giuseppe Massobrio|publisher=McGraw–Hill Professional|year=1993|isbn=0071349553|url=http://books.google.com/books?id=5IBYU9xrGaIC&pg=PA96&dq=gummel-poon+charge+model&as_brr=3&ei=v4TkRp-4Gp2cowLM7bnCCw&sig=vYrycIhlQKCq7VmoK231pjYXPyU#PPA98,M1}}</ref> Pandangan mengenai kendali-muatan dengan mudah menangani transistor-foto, dimana pembawa minoritas di daerah basis dibangkitkan oleh penyerapan foton, dan menangani pematian dinamik atau waktu pulih, yang mana bergantung pada penggabungan kembali muatan di daerah basis. Walaupun begitu, karena muatan basis bukanlah isyarat yang dapat diukur pada saluran, pandangan kendali arus dan tegangan biasanya digunakan pada desain dan analisis sirkuit.
Pada desain sirkuit analog, pandangan kendali arus sering digunakan karena ini hampir linier. Arus kolektor kira-kira <math>\beta_F</math> kali lipat dari arus basis. Beberapa sirkuit dasar dapat didesain dengan mengasumsikan bahwa tegangan emitor-basis kira-kira tetap, dan arus kolektor adalah beta kali lipat dari arus basis. Walaupun begitu, untuk mendesain sirkuit BJT dengan akurat dan dapat diandalkan, diperlukan model kendali-tegangan (sebagai contoh [[model Ebers–Moll]])<ref name=hh/>. Model kendali-tegangan membutuhkan fungsi eksponensial yang harus diperhitungkan, tetapi jika ini dilinierkan, transistor dapat dimodelkan sebagai sebuah transkonduktansi, seperti pada [[model Ebers–Moll]], desain untuk sirkuit seperti penguat diferensial menjadi masalah linier, jadi pandangan kontrol-tegangan sering diutamakan. Untuk sirkuit translinier, dimana kurva eksponensiak I-V adalah kunci dari operasi, transistor biasanya dimodelkan sebagai terkendali tegangan dengan transkonduktansi sebanding dengan arus kolektor.
Baris 36:
[[Berkas:npn BJT cross section.PNG|jmpl|thumb|Irisan transistor NPN yang disederhanakan]]
[[Berkas:Transistor-die-KSY34.jpg|jmpl|thumb|Kepingan transistor NPN frekuensi tinggi KSY34, basis dan emitor disambungkan melalui ikatan kawat]]
BJT terdiri dari tiga daerah semikonduktor yang berbeda pengotorannya, yaitu daerah ''emitor'', daerah ''basis'' dan daerah ''kolektor''. Daerah-daerah tersebut adalah tipe-p, tipe-n dan tipe-p pada transistor PNP, dan tipe-n, tipe-p dan tipe-n pada transistor NPN. Setiap daerah semikonduktor disambungkan ke saluran yang juga dinamai ''emitor'' (E), ''basis'' (B) dan ''kolektor'' (C).
''Basis'' secara fisik terletak di antara ''emitor'' dan ''kolektor'', dan dibuat dari bahan [[semikonduktor]] terkotori ringan resistivitas tinggi. Kolektor mengelilingi daerah emitor, membuat hampir tidak mungkin untuk mengumpulkan elektron yang diinjeksikan ke daerah basis untuk melarikan diri, membuat harga α sangat dekat ke satu, dan juga memberikan β yang lebih besar. Irisan dari BJT menunjukkan bahwa pertemuan kolektor-basis jauh lebih besar dari pertemuan kolektor-basis.
Transistor pertemuan dwikutub tidak seperti transistor lainnya karena biasanya bukan merupakan peranti simetris. Ini berarti dengan mempertukarkan kolektor dan emitor membuat transistor meninggalkan moda aktif-maju dan mulai beroperasi pada moda terbalik. Karena struktur internal transistor dioptimalkan untuk operasi moda aktif-maju, mempertukarkan kolektor dan emitor membuat harga α dan β pada operasi mundur jauh lebih kecil dari harga operasi maju, seringkali α bahkan kurang dari 0.5. Buruknya simetrisitas terutama dikarenakan perbandingan pengotoran pada emitor dan kolektor. Emitor dikotori berat, sedangkan kolektor dikotori ringan, memungkinkan tegangan panjar terbalik yang besar sebelum pertemuan kolektor-basis bobol. Pertemuan kolektor-basis dipanjar terbalik pada operasi normal. Alasan emitor dikotori berat adalah untuk memperbesar efisiensi injeksi, yaitu perbandingan antara pembawa yang diinjeksikan oleh emitor dengan yang diinjeksikan oleh basis. Untuk penguatan arus yang tinggi, hampir semua pembawa yang diinjeksikan ke pertemuan emitor-basis harus datang dari emitor.