Buka menu utama

Perubahan

4.827 bita dihapus, 2 tahun yang lalu
tidak ada ringkasan suntingan
H ahahahhahahahahaha
{{sains}}
[[Berkas:Euclid.jpg|thumb|272px|[[Euklides]], matematikawan Yunani, abad ke-3 SM, seperti yang dilukiskan oleh [[Raffaello Sanzio]] di dalam detail ini dari ''[[Sekolah Athena]]''.<ref>Tidak ada perupaan atau penjelasan tentang wujud fisik Euklides yang dibuat selama masa hidupnya yang masih bertahan sebagai kekunoan. Oleh karena itu, penggambaran Euklides di dalam karya seni bergantung pada daya khayal seorang seniman (''lihat [[Euklides]]'').</ref>]]
 
'''Matematika''' (dari [[bahasa Yunani]]: ''μαθηματικά'' - ''mathēmatiká'') adalah studi [[besaran]], [[struktur]], [[ruang]], dan [[kalkulus|perubahan]]. Para [[matematikawan]] mencari berbagai [[pola]],<ref>[[Lynn Steen]] (29 April 1988). ''[[:en:The Science of Patterns|The Science of Patterns]]'' [[:en:Science (journal)|''Science'']], 240: 611–616. dan diikhtisarkan di [http://www.ascd.org/portal/site/ascd/template.chapter/menuitem.1889bf0176da7573127855b3e3108a0c/?chapterMgmtId=f97433df69abb010VgnVCM1000003d01a8c0RCRD Association for Supervision and Curriculum Development.], ascd.org</ref><ref>[[:en:Keith Devlin|Keith Devlin]], ''Mathematics: The Science of Patterns: The Search for Order in Life, Mind and the Universe'' (Scientific American Paperback Library) 1996, ISBN 978-0-7167-5047-5</ref> merumuskan [[konjektur]] baru, dan membangun kebenaran melalui [[metode deduksi]] yang [[ketat]] diturunkan dari [[aksioma|aksioma-aksioma]] dan [[definisi|definisi-definisi]] yang bersesuaian.<ref>Jourdain.</ref>
 
Terjadi perdebatan tentang apakah objek-objek matematika seperti [[bilangan]] dan [[titik (geometri)|titik]] sudah ada di semesta, jadi ditemukan, atau ciptaan manusia. Seorang matematikawan [[Benjamin Peirce]] menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".<ref>Peirce, p.97</ref> Namun, walau matematika pada kenyataannya sangat bermanfaat bagi kehidupan, perkembangan sains dan teknologi, sampai upaya melestarikan alam, matematika hidup di alam gagasan, bukan di realita atau kenyataan. Dengan tepat, [[Albert Einstein]] menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."<ref name=certain/> Makna dari "Matematika tak merujuk kepada kenyataan" menyampaikan pesan bahwa gagasan matematika itu ideal dan steril atau terhindar dari pengaruh manusia. Uniknya, kebebasannya dari kenyataan dan pengaruh manusia ini nantinya justru memungkinkan penyimpulan pernyataan bahwa semesta ini merupakan sebuah struktur matematika, menurut [[:en:Max Tegmark|Max Tegmark]]. Jika kita percaya bahwa realita di luar semesta ini haruslah bebas dari pengaruh manusia, maka harus struktur matematika lah semesta itu.
 
Melalui penggunaan [[penalaran]] [[logika]] dan [[abstraksi (matematika)|abstraksi]], matematika berkembang dari [[pencacahan]], [[kalkulasi|perhitungan]], [[pengukuran]], dan pengkajian sistematis terhadap [[bangun (geometri)|bangun]] dan [[gerak|pergerakan]] benda-benda fisika. Matematika praktis mewujud dalam kegiatan manusia sejak adanya [[Sejarah matematika|rekaman tertulis]]. Argumentasi matematika yang [[ketat]] pertama muncul di dalam [[Matematika Yunani]], terutama di dalam karya [[Euklides]], ''[[Elemen Euklides|Elemen]]''.
 
Matematika selalu berkembang, misalnya di [[Tiongkok]] pada tahun 300 [[Sebelum Masehi|SM]], di [[India]] pada tahun 100 [[Masehi|M]], dan di Arab pada tahun 800 M, hingga zaman [[Renaisans]], ketika temuan baru matematika berinteraksi dengan [[sains|penemuan ilmiah]] baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.<ref>Eves</ref>
 
Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk [[ilmu alam]], [[teknik]], [[kedokteran]]/[[medis]], dan [[ilmu sosial]] seperti [[ekonomi]], dan [[psikologi]]. [[Matematika terapan]], cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti [[statistika]] dan [[teori permainan]].
 
Para matematikawan juga bergulat di dalam [[matematika murni]], atau matematika untuk perkembangan matematika itu sendiri. Mereka berupaya menjawab pertanyaan-pertanyaan yang muncul di dalam pikirannya, walaupun belum diketahui penerapannya. Namun, kenyataannya banyak sekali gagasan matematika yang sangat abstrak dan tadinya tak diketahui relevansinya dengan kehidupan, mendadak ditemukan penerapannya. Pengembangan matematika (murni) dapat mendahului atau didahului kebutuhannya dalam kehidupan. Penerapan praktis gagasan matematika yang menjadi latar munculnya matematika murni seringkali ditemukan kemudian.<ref>Peterson</ref>
 
== Etimologi ==
Pengguna anonim