Elemen (matematika)
Elemen atau anggota (bahasa Inggris: member) dari suatu himpunan dalam matematika adalah objek-objek matematika tertentu yang membentuk himpunan itu.
HimpunanSunting
Penulisan A = {1, 2, 3, 4} berarti bahwa elemen-elemen himpunan A adalah bilangan 1, 2, 3 dan 4. Himpunan elemen-elemen A, misalnya {1, 2}, merupakan subset A.
Himpunan itu sendiri dapat merupakan elemen. Misalnya ada himpunan B = {1, 2, {3, 4}}. Elemen-elemen B bukan 1, 2, 3, dan 4. Melainkan, hanya ada tiga elemen B, yaitu bilangan 1 dan 2, dan himpunan {3, 4}.
Elemen-elemen suatu himpunan dapat berupa apa saja. Misalnya, C = { merah, hijau, biru }, adalah suatu himpunan yang elemen-elemennya adalah warna-warna merah, hijau dan biru.
ContohSunting
Menggunakan himpunan-himpunan yang didefinisikan di atas, yaitu A = {1, 2, 3, 4 }, B = {1, 2, {3, 4}} dan C = { merah, hijau, biru }:
- 2 ∈ A
- {3,4} ∈ B
- {3,4} adalah anggota dari B
- Kuning ∉ C
- Kardinalitas D = { 2, 4, 8, 10, 12 } adalah finit dan sama dengan 5.
- Kardinalitas P = { 2, 3, 5, 7, 11, 13, ...} (bilangan prima) adalah infinit (ini dibuktikan oleh Euclid).
ReferensiSunting
Pustaka tambahanSunting
- Halmos, Paul R. (1974) [1960], Naive Set Theory, Undergraduate Texts in Mathematics (edisi ke-Hardcover), NY: Springer-Verlag, ISBN 0-387-90092-6 - "Naive" means that it is not fully axiomatized, not that it is silly or easy (Halmos's treatment is neither).
- Jech, Thomas (2002), "Set Theory", Stanford Encyclopedia of Philosophy
- Suppes, Patrick (1972) [1960], Axiomatic Set Theory, NY: Dover Publications, Inc., ISBN 0-486-61630-4 - Both the notion of set (a collection of members), membership or element-hood, the axiom of extension, the axiom of separation, and the union axiom (Suppes calls it the sum axiom) are needed for a more thorough understanding of "set element".
Pranala luarSunting
- (Inggris)